基于卡尔曼进化算法的弹性关节运动控制

S. Caux, S. Carriere, M. Fadel, B. Sareni
{"title":"基于卡尔曼进化算法的弹性关节运动控制","authors":"S. Caux, S. Carriere, M. Fadel, B. Sareni","doi":"10.1109/IAS.2009.5324812","DOIUrl":null,"url":null,"abstract":"Actual industrial ambition is to remove a maximum of sensor to improve reliability and cost. Performances are then decreasing a lot, specially for a system with variable parameters and direct drives. Moreover, a two-mass system representing numerous class of industrial problem can become unstable. Keeping stability, a simple controller and observer tuning approach and a lower time consuming are main goals of this study. A previous calculated state feedback is used as base for two Kalman filters with special a noise matrix. An evolutionary algorithm optimizes observer's degrees of freedom to keep stability all over the stiffness variation. The results show that the stability and performances are kept on an experimental test bench.","PeriodicalId":178685,"journal":{"name":"2009 IEEE Industry Applications Society Annual Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motion Control of Elastic Joint Based on Kalman Optimization with Evolutionary Algorithm\",\"authors\":\"S. Caux, S. Carriere, M. Fadel, B. Sareni\",\"doi\":\"10.1109/IAS.2009.5324812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Actual industrial ambition is to remove a maximum of sensor to improve reliability and cost. Performances are then decreasing a lot, specially for a system with variable parameters and direct drives. Moreover, a two-mass system representing numerous class of industrial problem can become unstable. Keeping stability, a simple controller and observer tuning approach and a lower time consuming are main goals of this study. A previous calculated state feedback is used as base for two Kalman filters with special a noise matrix. An evolutionary algorithm optimizes observer's degrees of freedom to keep stability all over the stiffness variation. The results show that the stability and performances are kept on an experimental test bench.\",\"PeriodicalId\":178685,\"journal\":{\"name\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2009.5324812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.5324812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

实际的工业目标是最大限度地去除传感器,以提高可靠性和成本。性能下降了很多,特别是对于一个系统的可变参数和直接驱动。此外,一个代表多类工业问题的双质量系统可能变得不稳定。保持稳定性,简单的控制器和观测器调谐方法以及较低的时间消耗是本研究的主要目标。利用先前计算的状态反馈作为基,对两个具有特殊噪声矩阵的卡尔曼滤波器进行了滤波。采用进化算法优化观测器的自由度,使其在整个刚度变化过程中保持稳定。结果表明,该系统在实验台上保持了良好的稳定性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion Control of Elastic Joint Based on Kalman Optimization with Evolutionary Algorithm
Actual industrial ambition is to remove a maximum of sensor to improve reliability and cost. Performances are then decreasing a lot, specially for a system with variable parameters and direct drives. Moreover, a two-mass system representing numerous class of industrial problem can become unstable. Keeping stability, a simple controller and observer tuning approach and a lower time consuming are main goals of this study. A previous calculated state feedback is used as base for two Kalman filters with special a noise matrix. An evolutionary algorithm optimizes observer's degrees of freedom to keep stability all over the stiffness variation. The results show that the stability and performances are kept on an experimental test bench.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信