超声诱导碳酸盐岩沥青质去除的共聚焦成像

{"title":"超声诱导碳酸盐岩沥青质去除的共聚焦成像","authors":"","doi":"10.33140/pcii.03.01.06","DOIUrl":null,"url":null,"abstract":"Asphaltenes deposition is a major issue in the petroleum industry as it can have a detrimental impact on hydrocarbon recovery efficiency. Therefore, it is imperative to study the fundamental mechanisms controlling the asphaltenes flocculation and deposition in reservoirs allowing us to prevent and possibly eliminate such problem. Hitherto many studies have highlighted ultrasonication as a potential remediation technique but no investigation has been able to provide direct visual evidence of the phenomena. The primary objective of this study is to visualize the deposition of asphaltenes and their subsequent removal by ultrasonication in Indiana Limestone using state of the art confocal microscopy. To do so, we performed a comprehensive series of experiments by flooding Indiana Limestone core samples with crude oil and later passing ultrasonic waves through the flooded sample. Four core samples of Indiana Limestone each displaying different permeability were used, these are referred to as A2, B2, C4, and D4. At each stage of experiment series of images were captured by confocal microscopy depicting asphaltenes deposition and it’s post-sonication distribution. The images were further segmented allowing us to compute changes in the asphaltenes content before and after sonication. The comparison of confocal scans reveals that the ultrasonic irradiation is highly efficient in removing asphaltenes from the low permeability core samples, whereas in the case of highly permeable cores, rather than preventing it promoted the asphaltenes flocculation. Surprisingly, an increase in asphaltenes content was observed after ultrasonication in high permeability core samples.","PeriodicalId":355186,"journal":{"name":"Petroleum and Chemical Industry International","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Visualization of Ultrasonication Induced Asphaltenes Removal in Carbonate Rock Using Confocal Imaging\",\"authors\":\"\",\"doi\":\"10.33140/pcii.03.01.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Asphaltenes deposition is a major issue in the petroleum industry as it can have a detrimental impact on hydrocarbon recovery efficiency. Therefore, it is imperative to study the fundamental mechanisms controlling the asphaltenes flocculation and deposition in reservoirs allowing us to prevent and possibly eliminate such problem. Hitherto many studies have highlighted ultrasonication as a potential remediation technique but no investigation has been able to provide direct visual evidence of the phenomena. The primary objective of this study is to visualize the deposition of asphaltenes and their subsequent removal by ultrasonication in Indiana Limestone using state of the art confocal microscopy. To do so, we performed a comprehensive series of experiments by flooding Indiana Limestone core samples with crude oil and later passing ultrasonic waves through the flooded sample. Four core samples of Indiana Limestone each displaying different permeability were used, these are referred to as A2, B2, C4, and D4. At each stage of experiment series of images were captured by confocal microscopy depicting asphaltenes deposition and it’s post-sonication distribution. The images were further segmented allowing us to compute changes in the asphaltenes content before and after sonication. The comparison of confocal scans reveals that the ultrasonic irradiation is highly efficient in removing asphaltenes from the low permeability core samples, whereas in the case of highly permeable cores, rather than preventing it promoted the asphaltenes flocculation. Surprisingly, an increase in asphaltenes content was observed after ultrasonication in high permeability core samples.\",\"PeriodicalId\":355186,\"journal\":{\"name\":\"Petroleum and Chemical Industry International\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum and Chemical Industry International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/pcii.03.01.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum and Chemical Industry International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/pcii.03.01.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

沥青质沉积是石油工业中的一个主要问题,因为它会对油气采收率产生不利影响。因此,研究沥青质在储层中絮凝沉积的基本机理是预防和消除沥青质絮凝沉积问题的必要措施。迄今为止,许多研究都强调超声波是一种潜在的修复技术,但没有调查能够提供直接的视觉证据。本研究的主要目的是利用最先进的共聚焦显微镜观察印第安纳石灰石中沥青质的沉积及其随后的超声去除过程。为此,我们进行了一系列全面的实验,将印第安纳石灰石岩心样品浸入原油,然后通过超声波穿过浸出的样品。采用了4种渗透率不同的印第安纳石灰石岩心样品,分别称为A2、B2、C4和D4。在实验的每个阶段,通过共聚焦显微镜拍摄了一系列图像,描绘了沥青质的沉积及其后超声分布。图像进一步分割,使我们能够计算超声前后沥青质含量的变化。共聚焦扫描对比结果表明,超声辐照对低渗透岩心样品中的沥青质去除效果显著,而对高渗透岩心样品中的沥青质去除效果不明显,反而促进了沥青质的絮凝。令人惊讶的是,在高渗透率岩心样品中,超声处理后发现沥青质含量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct Visualization of Ultrasonication Induced Asphaltenes Removal in Carbonate Rock Using Confocal Imaging
Asphaltenes deposition is a major issue in the petroleum industry as it can have a detrimental impact on hydrocarbon recovery efficiency. Therefore, it is imperative to study the fundamental mechanisms controlling the asphaltenes flocculation and deposition in reservoirs allowing us to prevent and possibly eliminate such problem. Hitherto many studies have highlighted ultrasonication as a potential remediation technique but no investigation has been able to provide direct visual evidence of the phenomena. The primary objective of this study is to visualize the deposition of asphaltenes and their subsequent removal by ultrasonication in Indiana Limestone using state of the art confocal microscopy. To do so, we performed a comprehensive series of experiments by flooding Indiana Limestone core samples with crude oil and later passing ultrasonic waves through the flooded sample. Four core samples of Indiana Limestone each displaying different permeability were used, these are referred to as A2, B2, C4, and D4. At each stage of experiment series of images were captured by confocal microscopy depicting asphaltenes deposition and it’s post-sonication distribution. The images were further segmented allowing us to compute changes in the asphaltenes content before and after sonication. The comparison of confocal scans reveals that the ultrasonic irradiation is highly efficient in removing asphaltenes from the low permeability core samples, whereas in the case of highly permeable cores, rather than preventing it promoted the asphaltenes flocculation. Surprisingly, an increase in asphaltenes content was observed after ultrasonication in high permeability core samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信