三维静态混合器的大规模拓扑优化

Si-ying Sun, J. Ghandhi, Xiaoping Qian
{"title":"三维静态混合器的大规模拓扑优化","authors":"Si-ying Sun, J. Ghandhi, Xiaoping Qian","doi":"10.1115/detc2020-22132","DOIUrl":null,"url":null,"abstract":"\n Topology optimization (TO) was conducted for three dimensional static fluid mixers. The problem is optimized using the weakly coupled Navier-Stokes equation at low Reynolds number (Re ≤ 1) and a convection-diffusion equation. The domain was discretized with up to 10 million cells. The optimizations were run with 1024 to 2048 CPUs on a national supercomputer. For a mixer in a square cross-section channel, the mixing was improved by 83% for a modest 2.5 times higher pressure drop compared with the open straight channel. For a cylindrical cross-section tee arrangement, the mixing improved by 91% with a 2.5 times higher pressure drop compared to the straight channel.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large Scale Topology Optimization of 3D Static Mixers\",\"authors\":\"Si-ying Sun, J. Ghandhi, Xiaoping Qian\",\"doi\":\"10.1115/detc2020-22132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Topology optimization (TO) was conducted for three dimensional static fluid mixers. The problem is optimized using the weakly coupled Navier-Stokes equation at low Reynolds number (Re ≤ 1) and a convection-diffusion equation. The domain was discretized with up to 10 million cells. The optimizations were run with 1024 to 2048 CPUs on a national supercomputer. For a mixer in a square cross-section channel, the mixing was improved by 83% for a modest 2.5 times higher pressure drop compared with the open straight channel. For a cylindrical cross-section tee arrangement, the mixing improved by 91% with a 2.5 times higher pressure drop compared to the straight channel.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对三维静态流体混合器进行了拓扑优化。利用低雷诺数(Re≤1)弱耦合Navier-Stokes方程和对流扩散方程对问题进行了优化。该结构域由多达1000万个细胞离散化。优化是在一台国家超级计算机上使用1024到2048个cpu运行的。对于方形截面通道中的混合器,混合效率提高了83%,压降比开放的直通道高2.5倍。对于圆柱形截面三通布置,混合效率提高了91%,压降是直通道的2.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Scale Topology Optimization of 3D Static Mixers
Topology optimization (TO) was conducted for three dimensional static fluid mixers. The problem is optimized using the weakly coupled Navier-Stokes equation at low Reynolds number (Re ≤ 1) and a convection-diffusion equation. The domain was discretized with up to 10 million cells. The optimizations were run with 1024 to 2048 CPUs on a national supercomputer. For a mixer in a square cross-section channel, the mixing was improved by 83% for a modest 2.5 times higher pressure drop compared with the open straight channel. For a cylindrical cross-section tee arrangement, the mixing improved by 91% with a 2.5 times higher pressure drop compared to the straight channel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信