距离遗传图的精确枚举

C. Chauve, Éric Fusy, Jérémie O. Lumbroso
{"title":"距离遗传图的精确枚举","authors":"C. Chauve, Éric Fusy, Jérémie O. Lumbroso","doi":"10.1137/1.9781611974775.3","DOIUrl":null,"url":null,"abstract":"Distance-hereditary graphs form an important class of graphs, from the theoretical point of view, due to the fact that they are the totally decomposable graphs for the split-decomposition. The previous best enumerative result for these graphs is from Nakano et al. (J. Comp. Sci. Tech., 2007), who have proven that the number of distance-hereditary graphs on $n$ vertices is bounded by ${2^{\\lceil 3.59n\\rceil}}$. \nIn this paper, using classical tools of enumerative combinatorics, we improve on this result by providing an exact enumeration of distance-hereditary graphs, which allows to show that the number of distance-hereditary graphs on $n$ vertices is tightly bounded by ${(7.24975\\ldots)^n}$---opening the perspective such graphs could be encoded on $3n$ bits. We also provide the exact enumeration and asymptotics of an important subclass, the 3-leaf power graphs. \nOur work illustrates the power of revisiting graph decomposition results through the framework of analytic combinatorics.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An Exact Enumeration of Distance-Hereditary Graphs\",\"authors\":\"C. Chauve, Éric Fusy, Jérémie O. Lumbroso\",\"doi\":\"10.1137/1.9781611974775.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distance-hereditary graphs form an important class of graphs, from the theoretical point of view, due to the fact that they are the totally decomposable graphs for the split-decomposition. The previous best enumerative result for these graphs is from Nakano et al. (J. Comp. Sci. Tech., 2007), who have proven that the number of distance-hereditary graphs on $n$ vertices is bounded by ${2^{\\\\lceil 3.59n\\\\rceil}}$. \\nIn this paper, using classical tools of enumerative combinatorics, we improve on this result by providing an exact enumeration of distance-hereditary graphs, which allows to show that the number of distance-hereditary graphs on $n$ vertices is tightly bounded by ${(7.24975\\\\ldots)^n}$---opening the perspective such graphs could be encoded on $3n$ bits. We also provide the exact enumeration and asymptotics of an important subclass, the 3-leaf power graphs. \\nOur work illustrates the power of revisiting graph decomposition results through the framework of analytic combinatorics.\",\"PeriodicalId\":340112,\"journal\":{\"name\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Analytic Algorithmics and Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611974775.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974775.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从理论上讲,距离遗传图是一类重要的图,因为它们是分裂分解的完全可分解图。之前关于这些图的最佳列举结果来自Nakano等人(J. Comp. Sci.)。Tech., 2007),他们证明了$n$顶点上的距离遗传图的数量由${2^{\ ceil 3.59n\ ceil}}$限定。在本文中,我们使用枚举组合的经典工具,通过提供距离遗传图的精确枚举来改进这一结果,这允许证明$n$顶点上的距离遗传图的数量紧密地由${(7.24975\ldots)^n}$约束——打开透视图,这样的图可以在$3n$位上编码。我们还给出了一个重要子类——三叶幂图的精确枚举和渐近性。我们的工作说明了通过分析组合学的框架重新审视图分解结果的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exact Enumeration of Distance-Hereditary Graphs
Distance-hereditary graphs form an important class of graphs, from the theoretical point of view, due to the fact that they are the totally decomposable graphs for the split-decomposition. The previous best enumerative result for these graphs is from Nakano et al. (J. Comp. Sci. Tech., 2007), who have proven that the number of distance-hereditary graphs on $n$ vertices is bounded by ${2^{\lceil 3.59n\rceil}}$. In this paper, using classical tools of enumerative combinatorics, we improve on this result by providing an exact enumeration of distance-hereditary graphs, which allows to show that the number of distance-hereditary graphs on $n$ vertices is tightly bounded by ${(7.24975\ldots)^n}$---opening the perspective such graphs could be encoded on $3n$ bits. We also provide the exact enumeration and asymptotics of an important subclass, the 3-leaf power graphs. Our work illustrates the power of revisiting graph decomposition results through the framework of analytic combinatorics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信