Shang-Lin Wu, Chun-Wei Wu, N. Pal, Chih-Yu Chen, Shi-An Chen
{"title":"运动意象分类的常见空间模式与线性判别分析","authors":"Shang-Lin Wu, Chun-Wei Wu, N. Pal, Chih-Yu Chen, Shi-An Chen","doi":"10.1109/CCMB.2013.6609178","DOIUrl":null,"url":null,"abstract":"A Brain-Computer Interface (BCI) system provides a convenient way of communication for healthy subjects and subjects who suffer from severe diseases such as amyotrophic lateral sclerosis (ALS). Motor imagery (MI) is one of the popular ways of designing BCI systems. The architecture of many BCI system is quite complex and they involve time consuming processing. The electroencephalography (EEG) signal is the most commonly used inputs for BCI applications but EEG is often contaminated with noise. To overcome such drawbacks, in this paper we use the common spatial pattern (CSP) for feature extraction from EEG and the linear discriminant analysis (LDA) for motor imagery classification. In this study, CSP and LDA have been used to reduce the artifact and classify MI-based EEG signal. We have used two-level cross validation scheme to determine the subject specific best time window and number of CSP features. We have compared the performance of our system with BCI competition results. We have also experimented with MI data generated in our lab. The proposed system is found to produce good results. In particular, using our EEG data for MI movements, we have obtained an average classification accuracy of 80% for two subjects using only 9 channels, without any feature selection. This proposed MI-based BCI system may be used in real life applications.","PeriodicalId":395025,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Common spatial pattern and linear discriminant analysis for motor imagery classification\",\"authors\":\"Shang-Lin Wu, Chun-Wei Wu, N. Pal, Chih-Yu Chen, Shi-An Chen\",\"doi\":\"10.1109/CCMB.2013.6609178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Brain-Computer Interface (BCI) system provides a convenient way of communication for healthy subjects and subjects who suffer from severe diseases such as amyotrophic lateral sclerosis (ALS). Motor imagery (MI) is one of the popular ways of designing BCI systems. The architecture of many BCI system is quite complex and they involve time consuming processing. The electroencephalography (EEG) signal is the most commonly used inputs for BCI applications but EEG is often contaminated with noise. To overcome such drawbacks, in this paper we use the common spatial pattern (CSP) for feature extraction from EEG and the linear discriminant analysis (LDA) for motor imagery classification. In this study, CSP and LDA have been used to reduce the artifact and classify MI-based EEG signal. We have used two-level cross validation scheme to determine the subject specific best time window and number of CSP features. We have compared the performance of our system with BCI competition results. We have also experimented with MI data generated in our lab. The proposed system is found to produce good results. In particular, using our EEG data for MI movements, we have obtained an average classification accuracy of 80% for two subjects using only 9 channels, without any feature selection. This proposed MI-based BCI system may be used in real life applications.\",\"PeriodicalId\":395025,\"journal\":{\"name\":\"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCMB.2013.6609178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCMB.2013.6609178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Common spatial pattern and linear discriminant analysis for motor imagery classification
A Brain-Computer Interface (BCI) system provides a convenient way of communication for healthy subjects and subjects who suffer from severe diseases such as amyotrophic lateral sclerosis (ALS). Motor imagery (MI) is one of the popular ways of designing BCI systems. The architecture of many BCI system is quite complex and they involve time consuming processing. The electroencephalography (EEG) signal is the most commonly used inputs for BCI applications but EEG is often contaminated with noise. To overcome such drawbacks, in this paper we use the common spatial pattern (CSP) for feature extraction from EEG and the linear discriminant analysis (LDA) for motor imagery classification. In this study, CSP and LDA have been used to reduce the artifact and classify MI-based EEG signal. We have used two-level cross validation scheme to determine the subject specific best time window and number of CSP features. We have compared the performance of our system with BCI competition results. We have also experimented with MI data generated in our lab. The proposed system is found to produce good results. In particular, using our EEG data for MI movements, we have obtained an average classification accuracy of 80% for two subjects using only 9 channels, without any feature selection. This proposed MI-based BCI system may be used in real life applications.