利用轮替随机模型中的响度动力学

K. Laskowski
{"title":"利用轮替随机模型中的响度动力学","authors":"K. Laskowski","doi":"10.1109/SLT.2012.6424201","DOIUrl":null,"url":null,"abstract":"Stochastic turn-taking models have traditionally been implemented as N-grams, which condition predictions on recent binary-valued speech/non-speech contours. The current work re-implements this function using feed-forward neural networks, capable of accepting binary- as well as continuous-valued features; performance is shown to asymptotically approach that of the N-gram baseline as model complexity increases. The conditioning context is then extended to leverage loudness contours. Experiments indicate that the additional sensitivity to loudness considerably decreases average cross entropy rates on unseen data, by 0.03 bits per framing interval of 100 ms. This reduction is shown to make loudness-sensitive conversants capable of better predictions, with attention memory requirements at least 5 times smaller and responsiveness latency at least 10 times shorter than the loudness-insensitive baseline.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploiting loudness dynamics in stochastic models of turn-taking\",\"authors\":\"K. Laskowski\",\"doi\":\"10.1109/SLT.2012.6424201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic turn-taking models have traditionally been implemented as N-grams, which condition predictions on recent binary-valued speech/non-speech contours. The current work re-implements this function using feed-forward neural networks, capable of accepting binary- as well as continuous-valued features; performance is shown to asymptotically approach that of the N-gram baseline as model complexity increases. The conditioning context is then extended to leverage loudness contours. Experiments indicate that the additional sensitivity to loudness considerably decreases average cross entropy rates on unseen data, by 0.03 bits per framing interval of 100 ms. This reduction is shown to make loudness-sensitive conversants capable of better predictions, with attention memory requirements at least 5 times smaller and responsiveness latency at least 10 times shorter than the loudness-insensitive baseline.\",\"PeriodicalId\":375378,\"journal\":{\"name\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2012.6424201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随机轮取模型传统上被实现为n图,它对最近的二值语音/非语音轮廓进行预测。目前的工作使用前馈神经网络重新实现了这个功能,能够接受二进制和连续值特征;随着模型复杂度的增加,性能逐渐接近N-gram基线的性能。然后将条件反射上下文扩展到利用响度轮廓。实验表明,对响度的额外灵敏度大大降低了未见数据的平均交叉熵率,每帧间隔为100 ms降低0.03比特。这种减少被证明使对噪音敏感的熟悉者能够更好地预测,与对噪音不敏感的基线相比,对注意力记忆的要求至少减少了5倍,反应延迟至少缩短了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting loudness dynamics in stochastic models of turn-taking
Stochastic turn-taking models have traditionally been implemented as N-grams, which condition predictions on recent binary-valued speech/non-speech contours. The current work re-implements this function using feed-forward neural networks, capable of accepting binary- as well as continuous-valued features; performance is shown to asymptotically approach that of the N-gram baseline as model complexity increases. The conditioning context is then extended to leverage loudness contours. Experiments indicate that the additional sensitivity to loudness considerably decreases average cross entropy rates on unseen data, by 0.03 bits per framing interval of 100 ms. This reduction is shown to make loudness-sensitive conversants capable of better predictions, with attention memory requirements at least 5 times smaller and responsiveness latency at least 10 times shorter than the loudness-insensitive baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信