{"title":"PPSZ通用k-SAT -使Hertli的分析更简单,3-SAT更快","authors":"Dominik Scheder, J. Steinberger","doi":"10.4230/LIPIcs.CCC.2017.9","DOIUrl":null,"url":null,"abstract":"The currently fastest known algorithm for k-SAT is PPSZ named after its inventors Paturi, Pudlak, Saks, and Zane. Analyzing its running time is much easier for input formulas with a unique satisfying assignment. In this paper, we achieve three goals. First, we simplify Hertli's analysis for input formulas with multiple satisfying assignments. Second, we show a \"translation result\": if you improve PPSZ for k-CNF formulas with a unique satisfying assignment, you will immediately get a (weaker) improvement for general k-CNF formulas. Combining this with a result by Hertli from 2014, in which he gives an algorithm for Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general 3-SAT, thus obtaining the so far best known worst-case bounds for 3-SAT.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"PPSZ for General k-SAT - Making Hertli's Analysis Simpler and 3-SAT Faster\",\"authors\":\"Dominik Scheder, J. Steinberger\",\"doi\":\"10.4230/LIPIcs.CCC.2017.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The currently fastest known algorithm for k-SAT is PPSZ named after its inventors Paturi, Pudlak, Saks, and Zane. Analyzing its running time is much easier for input formulas with a unique satisfying assignment. In this paper, we achieve three goals. First, we simplify Hertli's analysis for input formulas with multiple satisfying assignments. Second, we show a \\\"translation result\\\": if you improve PPSZ for k-CNF formulas with a unique satisfying assignment, you will immediately get a (weaker) improvement for general k-CNF formulas. Combining this with a result by Hertli from 2014, in which he gives an algorithm for Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general 3-SAT, thus obtaining the so far best known worst-case bounds for 3-SAT.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2017.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2017.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PPSZ for General k-SAT - Making Hertli's Analysis Simpler and 3-SAT Faster
The currently fastest known algorithm for k-SAT is PPSZ named after its inventors Paturi, Pudlak, Saks, and Zane. Analyzing its running time is much easier for input formulas with a unique satisfying assignment. In this paper, we achieve three goals. First, we simplify Hertli's analysis for input formulas with multiple satisfying assignments. Second, we show a "translation result": if you improve PPSZ for k-CNF formulas with a unique satisfying assignment, you will immediately get a (weaker) improvement for general k-CNF formulas. Combining this with a result by Hertli from 2014, in which he gives an algorithm for Unique-3-SAT slightly beating PPSZ, we obtain an algorithm beating PPSZ for general 3-SAT, thus obtaining the so far best known worst-case bounds for 3-SAT.