{"title":"Toeplitz矩阵线性互补问题的模循环和斜循环分裂迭代方法","authors":"Min-yen Wu, Chenliang Li","doi":"10.1553/etna_vol55s391","DOIUrl":null,"url":null,"abstract":"By reformulating the linear complementarity problem involving a positive definite Toeplitz matrix as an equivalent fixed-point system, we construct a modulus-based circulant and skew-circulant splitting (MCSCS) iteration method. We also analyze the convergence of the method and show that the new method is effective by providing some numerical results.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modulus-based circulant and skew-circulant splitting iteration method for the linear complementarity problem with a Toeplitz matrix\",\"authors\":\"Min-yen Wu, Chenliang Li\",\"doi\":\"10.1553/etna_vol55s391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By reformulating the linear complementarity problem involving a positive definite Toeplitz matrix as an equivalent fixed-point system, we construct a modulus-based circulant and skew-circulant splitting (MCSCS) iteration method. We also analyze the convergence of the method and show that the new method is effective by providing some numerical results.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol55s391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol55s391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulus-based circulant and skew-circulant splitting iteration method for the linear complementarity problem with a Toeplitz matrix
By reformulating the linear complementarity problem involving a positive definite Toeplitz matrix as an equivalent fixed-point system, we construct a modulus-based circulant and skew-circulant splitting (MCSCS) iteration method. We also analyze the convergence of the method and show that the new method is effective by providing some numerical results.