简单锥约束凸二次优化的内点算法

M. Khaldi, M. Achache
{"title":"简单锥约束凸二次优化的内点算法","authors":"M. Khaldi, M. Achache","doi":"10.37418/amsj.12.1.5","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the numerical solution of simplicial cone constrained convex quadratic optimization (SCQO) problems. A reformulation of the K.K.T optimality conditions of SCQOs as an equivalent linear complementarity problem with $\\mathcal{P}$-matrix ($\\mathcal{P}$-LCP) is considered. Then, a feasible full-Newton step interior-point algorithm (IPA) is applied for solving SCQO via $\\mathcal{P}$-LCP. For the completeness of the study, we prove that the proposed algorithm is well-defined and converges locally quadratic to an optimal of SCQOs. Moreover, we obtain the currently best well-known iteration bound for the algorithm with short-update method, namely,$ \\mathcal{O}(\\sqrt{n}\\log\\frac{n}{\\epsilon })$. Finally, we present a various set of numerical results to show its efficiency.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"32 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AN INTERIOR-POINT ALGORITHM FOR SIMPLICIAL CONE CONSTRAINED CONVEX QUADRATIC OPTIMIZATION\",\"authors\":\"M. Khaldi, M. Achache\",\"doi\":\"10.37418/amsj.12.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the numerical solution of simplicial cone constrained convex quadratic optimization (SCQO) problems. A reformulation of the K.K.T optimality conditions of SCQOs as an equivalent linear complementarity problem with $\\\\mathcal{P}$-matrix ($\\\\mathcal{P}$-LCP) is considered. Then, a feasible full-Newton step interior-point algorithm (IPA) is applied for solving SCQO via $\\\\mathcal{P}$-LCP. For the completeness of the study, we prove that the proposed algorithm is well-defined and converges locally quadratic to an optimal of SCQOs. Moreover, we obtain the currently best well-known iteration bound for the algorithm with short-update method, namely,$ \\\\mathcal{O}(\\\\sqrt{n}\\\\log\\\\frac{n}{\\\\epsilon })$. Finally, we present a various set of numerical results to show its efficiency.\",\"PeriodicalId\":231117,\"journal\":{\"name\":\"Advances in Mathematics: Scientific Journal\",\"volume\":\"32 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics: Scientific Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37418/amsj.12.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了简单锥约束凸二次优化问题的数值解。将SCQOs的K.K.T最优性条件重新化为具有$\mathcal{P}$ -矩阵($\mathcal{P}$ -LCP)的等价线性互补问题。然后,采用可行的全牛顿阶跃内点算法(IPA)通过$\mathcal{P}$ -LCP求解SCQO。为了研究的完备性,我们证明了所提出的算法是定义良好的,并且收敛于局部二次最优的SCQOs。此外,我们还利用短更新法得到了该算法目前最知名的迭代界,即$ \mathcal{O}(\sqrt{n}\log\frac{n}{\epsilon })$。最后,我们给出了一组不同的数值结果来证明它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AN INTERIOR-POINT ALGORITHM FOR SIMPLICIAL CONE CONSTRAINED CONVEX QUADRATIC OPTIMIZATION
In this paper, we are concerned with the numerical solution of simplicial cone constrained convex quadratic optimization (SCQO) problems. A reformulation of the K.K.T optimality conditions of SCQOs as an equivalent linear complementarity problem with $\mathcal{P}$-matrix ($\mathcal{P}$-LCP) is considered. Then, a feasible full-Newton step interior-point algorithm (IPA) is applied for solving SCQO via $\mathcal{P}$-LCP. For the completeness of the study, we prove that the proposed algorithm is well-defined and converges locally quadratic to an optimal of SCQOs. Moreover, we obtain the currently best well-known iteration bound for the algorithm with short-update method, namely,$ \mathcal{O}(\sqrt{n}\log\frac{n}{\epsilon })$. Finally, we present a various set of numerical results to show its efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信