基于边缘计算的工业物联网实时视频传输优化

Lei Du, R. Huo
{"title":"基于边缘计算的工业物联网实时视频传输优化","authors":"Lei Du, R. Huo","doi":"10.1109/ICNP52444.2021.9651927","DOIUrl":null,"url":null,"abstract":"In the Industrial Internet of Things (IIoT) scenario, the increase of surveillance equipment brings challenges to the transmission of real-time video. It needs more efficient approaches to finish video transmission with more stability and accuracy. Therefore, we propose a self-adaptive transmission scheme of videos for multi-capture terminals under IIoT in this paper. To fit for the constant variation of network environment, we compress the videos that wait for transmitting from multi-capture terminals by reducing the non-key frames with Graph Convolutional Network (GCN). Moreover, a self-adaptive strategy of transmission is implemented on the Mobile Edge Computing (MEC) server to adjust the transmission volume of processed videos, and a multi-objective optimization algorithm is utilized to optimize the strategy of transmission during the video transmission. The relative experiments are conducted to validate the performance of the proposed scheme.","PeriodicalId":343813,"journal":{"name":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Video Transmission Optimization Based on Edge Computing in IIoT\",\"authors\":\"Lei Du, R. Huo\",\"doi\":\"10.1109/ICNP52444.2021.9651927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Industrial Internet of Things (IIoT) scenario, the increase of surveillance equipment brings challenges to the transmission of real-time video. It needs more efficient approaches to finish video transmission with more stability and accuracy. Therefore, we propose a self-adaptive transmission scheme of videos for multi-capture terminals under IIoT in this paper. To fit for the constant variation of network environment, we compress the videos that wait for transmitting from multi-capture terminals by reducing the non-key frames with Graph Convolutional Network (GCN). Moreover, a self-adaptive strategy of transmission is implemented on the Mobile Edge Computing (MEC) server to adjust the transmission volume of processed videos, and a multi-objective optimization algorithm is utilized to optimize the strategy of transmission during the video transmission. The relative experiments are conducted to validate the performance of the proposed scheme.\",\"PeriodicalId\":343813,\"journal\":{\"name\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP52444.2021.9651927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP52444.2021.9651927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业物联网(IIoT)场景下,监控设备的增加给实时视频传输带来了挑战。它需要更有效的方法来完成更稳定、更准确的视频传输。因此,本文提出了一种工业物联网下多采集终端的视频自适应传输方案。为了适应不断变化的网络环境,我们利用图卷积网络(GCN)减少非关键帧,对多采集终端等待传输的视频进行压缩。在移动边缘计算(MEC)服务器上实现自适应传输策略,调整处理后视频的传输量,并利用多目标优化算法对视频传输过程中的传输策略进行优化。通过相关实验验证了所提方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Video Transmission Optimization Based on Edge Computing in IIoT
In the Industrial Internet of Things (IIoT) scenario, the increase of surveillance equipment brings challenges to the transmission of real-time video. It needs more efficient approaches to finish video transmission with more stability and accuracy. Therefore, we propose a self-adaptive transmission scheme of videos for multi-capture terminals under IIoT in this paper. To fit for the constant variation of network environment, we compress the videos that wait for transmitting from multi-capture terminals by reducing the non-key frames with Graph Convolutional Network (GCN). Moreover, a self-adaptive strategy of transmission is implemented on the Mobile Edge Computing (MEC) server to adjust the transmission volume of processed videos, and a multi-objective optimization algorithm is utilized to optimize the strategy of transmission during the video transmission. The relative experiments are conducted to validate the performance of the proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信