人脸图像的模糊增强技术

Fatma E. Abd El-Sattar, M. Rihan, A. El-Fishawy, Ghada M. El-Banby, Noha A. El-Hag, F. El-Samie, A. Khalaf
{"title":"人脸图像的模糊增强技术","authors":"Fatma E. Abd El-Sattar, M. Rihan, A. El-Fishawy, Ghada M. El-Banby, Noha A. El-Hag, F. El-Samie, A. Khalaf","doi":"10.1109/ICEEM52022.2021.9480650","DOIUrl":null,"url":null,"abstract":"Nowadays, different systems and applications secure personal data using the person's biometric features. Face, fingerprint, hand geometry, palm print, iris, and voice signatures are examples of biometric traits. This paper presents a fuzzy enhancement technique for generating high-contrast and clear face images. Since images are captured in various settings, the output images may have poor quality and low contrast. Evaluation metrics such as entropy, spectral entropy, contrast, average gradient and edge magnitude are used for measuring the performance of the proposed technique. The obtained results are compared with those of the recent enhancement techniques.","PeriodicalId":352371,"journal":{"name":"2021 International Conference on Electronic Engineering (ICEEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Enhancement Technique of Face Images\",\"authors\":\"Fatma E. Abd El-Sattar, M. Rihan, A. El-Fishawy, Ghada M. El-Banby, Noha A. El-Hag, F. El-Samie, A. Khalaf\",\"doi\":\"10.1109/ICEEM52022.2021.9480650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, different systems and applications secure personal data using the person's biometric features. Face, fingerprint, hand geometry, palm print, iris, and voice signatures are examples of biometric traits. This paper presents a fuzzy enhancement technique for generating high-contrast and clear face images. Since images are captured in various settings, the output images may have poor quality and low contrast. Evaluation metrics such as entropy, spectral entropy, contrast, average gradient and edge magnitude are used for measuring the performance of the proposed technique. The obtained results are compared with those of the recent enhancement techniques.\",\"PeriodicalId\":352371,\"journal\":{\"name\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Electronic Engineering (ICEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEM52022.2021.9480650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Electronic Engineering (ICEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEM52022.2021.9480650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,不同的系统和应用程序使用人的生物特征来保护个人数据。面部、指纹、手部几何、掌纹、虹膜和声音签名都是生物特征的例子。提出了一种用于生成高对比度、清晰人脸图像的模糊增强技术。由于图像是在各种设置中捕获的,因此输出的图像可能质量较差,对比度较低。评价指标,如熵,谱熵,对比度,平均梯度和边缘幅度用于测量所提出的技术的性能。所得结果与近年来的增强技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy Enhancement Technique of Face Images
Nowadays, different systems and applications secure personal data using the person's biometric features. Face, fingerprint, hand geometry, palm print, iris, and voice signatures are examples of biometric traits. This paper presents a fuzzy enhancement technique for generating high-contrast and clear face images. Since images are captured in various settings, the output images may have poor quality and low contrast. Evaluation metrics such as entropy, spectral entropy, contrast, average gradient and edge magnitude are used for measuring the performance of the proposed technique. The obtained results are compared with those of the recent enhancement techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信