E-VAN:用于减少静态词嵌入中性别偏见的增强变分自编码器网络

Swati Tyagi, Jiaheng Xie, Rick Andrews
{"title":"E-VAN:用于减少静态词嵌入中性别偏见的增强变分自编码器网络","authors":"Swati Tyagi, Jiaheng Xie, Rick Andrews","doi":"10.1145/3582768.3582804","DOIUrl":null,"url":null,"abstract":"Recent research has shown that pre-trained context-independent word embeddings display biases such as racial bias, gender bias, etc. Using a novel, tunable algorithm, this study attempts to mitigate the hidden gender bias in static embeddings. In order to train the model, an enhanced variational autoencoder (E-VAN) is used to learn the latent space of the embedding. Then the latent distributions are used while adaptively resampling and re-weighting the rare/under-represented data. While the word embeddings retain semantic information, E-VAN effectively mitigates unwanted biased gendered associations. Our method E-VAN outperforms previous state-of-the-art methods in both quantitative and human evaluation.","PeriodicalId":315721,"journal":{"name":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-VAN : Enhanced Variational AutoEncoder Network for Mitigating Gender Bias in Static Word Embeddings\",\"authors\":\"Swati Tyagi, Jiaheng Xie, Rick Andrews\",\"doi\":\"10.1145/3582768.3582804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has shown that pre-trained context-independent word embeddings display biases such as racial bias, gender bias, etc. Using a novel, tunable algorithm, this study attempts to mitigate the hidden gender bias in static embeddings. In order to train the model, an enhanced variational autoencoder (E-VAN) is used to learn the latent space of the embedding. Then the latent distributions are used while adaptively resampling and re-weighting the rare/under-represented data. While the word embeddings retain semantic information, E-VAN effectively mitigates unwanted biased gendered associations. Our method E-VAN outperforms previous state-of-the-art methods in both quantitative and human evaluation.\",\"PeriodicalId\":315721,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3582768.3582804\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582768.3582804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,预先训练的上下文无关词嵌入会显示出种族偏见、性别偏见等偏见。本研究使用一种新颖的、可调的算法,试图减轻静态嵌入中隐藏的性别偏见。为了训练模型,使用了一种增强的变分自编码器(E-VAN)来学习嵌入的潜在空间。然后利用潜在分布自适应重采样和重加权稀有/代表性不足的数据。当词嵌入保留语义信息时,E-VAN有效地减轻了不必要的偏见性别关联。我们的方法E-VAN优于以前的最先进的方法在定量和人的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-VAN : Enhanced Variational AutoEncoder Network for Mitigating Gender Bias in Static Word Embeddings
Recent research has shown that pre-trained context-independent word embeddings display biases such as racial bias, gender bias, etc. Using a novel, tunable algorithm, this study attempts to mitigate the hidden gender bias in static embeddings. In order to train the model, an enhanced variational autoencoder (E-VAN) is used to learn the latent space of the embedding. Then the latent distributions are used while adaptively resampling and re-weighting the rare/under-represented data. While the word embeddings retain semantic information, E-VAN effectively mitigates unwanted biased gendered associations. Our method E-VAN outperforms previous state-of-the-art methods in both quantitative and human evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信