动觉康复运动训练评价的多层次运动分析

M. Devanne, S. Nguyen
{"title":"动觉康复运动训练评价的多层次运动分析","authors":"M. Devanne, S. Nguyen","doi":"10.1109/HUMANOIDS.2017.8246923","DOIUrl":null,"url":null,"abstract":"Analyzing and understanding human motion is a major research problem widely investigated in the last decades in various application domains. In this work, we address the problem of human motion analysis in the context of kinaesthetic rehabilitation using a robot coach system which should be able to learn how to perform a rehabilitation exercise as well as assess patients' movements. For that purpose, human motion analysis is crucial. We develop a human motion analysis method for learning a probabilistic representation of ideal movements from expert demonstrations. A Gaussian Mixture Model is employed from position and orientation features captured using a Microsoft Kinect v2. For assessing patients” movements, we propose a real-time multi-level analysis to both temporally and spatially identify and explain body part errors. This allows the robot to provide coaching advice to make the patient improve his movements. The evaluation on three rehabilitation exercises shows the potential of the proposed approach for learning and assessing kinaesthetic movements.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Multi-level motion analysis for physical exercises assessment in kinaesthetic rehabilitation\",\"authors\":\"M. Devanne, S. Nguyen\",\"doi\":\"10.1109/HUMANOIDS.2017.8246923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing and understanding human motion is a major research problem widely investigated in the last decades in various application domains. In this work, we address the problem of human motion analysis in the context of kinaesthetic rehabilitation using a robot coach system which should be able to learn how to perform a rehabilitation exercise as well as assess patients' movements. For that purpose, human motion analysis is crucial. We develop a human motion analysis method for learning a probabilistic representation of ideal movements from expert demonstrations. A Gaussian Mixture Model is employed from position and orientation features captured using a Microsoft Kinect v2. For assessing patients” movements, we propose a real-time multi-level analysis to both temporally and spatially identify and explain body part errors. This allows the robot to provide coaching advice to make the patient improve his movements. The evaluation on three rehabilitation exercises shows the potential of the proposed approach for learning and assessing kinaesthetic movements.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

分析和理解人体运动是近几十年来在各个应用领域广泛研究的一个主要研究问题。在这项工作中,我们使用机器人教练系统解决了动感康复背景下的人体运动分析问题,该系统应该能够学习如何进行康复练习以及评估患者的运动。为此,人体运动分析至关重要。我们开发了一种人体运动分析方法,用于从专家演示中学习理想运动的概率表示。使用Microsoft Kinect v2捕获的位置和方向特征采用高斯混合模型。为了评估患者的运动,我们提出了一种实时的多层次分析,以在时间和空间上识别和解释身体部位的错误。这使得机器人可以提供指导建议,让病人改善他的动作。对三种康复练习的评估显示了所提出的方法在学习和评估动觉运动方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-level motion analysis for physical exercises assessment in kinaesthetic rehabilitation
Analyzing and understanding human motion is a major research problem widely investigated in the last decades in various application domains. In this work, we address the problem of human motion analysis in the context of kinaesthetic rehabilitation using a robot coach system which should be able to learn how to perform a rehabilitation exercise as well as assess patients' movements. For that purpose, human motion analysis is crucial. We develop a human motion analysis method for learning a probabilistic representation of ideal movements from expert demonstrations. A Gaussian Mixture Model is employed from position and orientation features captured using a Microsoft Kinect v2. For assessing patients” movements, we propose a real-time multi-level analysis to both temporally and spatially identify and explain body part errors. This allows the robot to provide coaching advice to make the patient improve his movements. The evaluation on three rehabilitation exercises shows the potential of the proposed approach for learning and assessing kinaesthetic movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信