{"title":"超宽带微带贴片天线的高定向CPW馈电设计","authors":"M. Arulaalan","doi":"10.54228/mjaret08210004","DOIUrl":null,"url":null,"abstract":"In this section, we will discuss the design and implementation of a new coplanar waveguide (CPW) antenna, which is designed for use in ultra-wideband (UWB) communication. Two carved ground planes distinguish the radiator from the rest of the chassis. It is necessary to dig a hole in the ruined ground. Circular radiators with rectangular cutouts are excellent for superheterodyne receivers because they have wider bandwidths than other types of radiators. This antenna operates at a frequency of 7 GHz and has a return loss of less than -10 dB. Its working frequency is 7 GHz. When utilising HFSS12, it is possible to determine S11 and VSWR.","PeriodicalId":324503,"journal":{"name":"Multidisciplinary Journal for Applied Research in Engineering and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UWB Microstrip Patch Antenna with A Highly Directional CPW Fed Design\",\"authors\":\"M. Arulaalan\",\"doi\":\"10.54228/mjaret08210004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this section, we will discuss the design and implementation of a new coplanar waveguide (CPW) antenna, which is designed for use in ultra-wideband (UWB) communication. Two carved ground planes distinguish the radiator from the rest of the chassis. It is necessary to dig a hole in the ruined ground. Circular radiators with rectangular cutouts are excellent for superheterodyne receivers because they have wider bandwidths than other types of radiators. This antenna operates at a frequency of 7 GHz and has a return loss of less than -10 dB. Its working frequency is 7 GHz. When utilising HFSS12, it is possible to determine S11 and VSWR.\",\"PeriodicalId\":324503,\"journal\":{\"name\":\"Multidisciplinary Journal for Applied Research in Engineering and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidisciplinary Journal for Applied Research in Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54228/mjaret08210004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidisciplinary Journal for Applied Research in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54228/mjaret08210004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UWB Microstrip Patch Antenna with A Highly Directional CPW Fed Design
In this section, we will discuss the design and implementation of a new coplanar waveguide (CPW) antenna, which is designed for use in ultra-wideband (UWB) communication. Two carved ground planes distinguish the radiator from the rest of the chassis. It is necessary to dig a hole in the ruined ground. Circular radiators with rectangular cutouts are excellent for superheterodyne receivers because they have wider bandwidths than other types of radiators. This antenna operates at a frequency of 7 GHz and has a return loss of less than -10 dB. Its working frequency is 7 GHz. When utilising HFSS12, it is possible to determine S11 and VSWR.