结合DCT、PCA和bp神经网络的人脸识别算法

Guoliang Yang, Linjia Xu
{"title":"结合DCT、PCA和bp神经网络的人脸识别算法","authors":"Guoliang Yang, Linjia Xu","doi":"10.1109/ICACI.2012.6463254","DOIUrl":null,"url":null,"abstract":"This paper provides an integrated algorithm to deal with face recognition. It uses discrete cosine transform and principal component analysis to reduce dimensions and extract face features, and then trains and tests face images through the BP neural network classifier. It also seeks for other method such as the nearest neighbor classifier to have a comparison with BP neural network. Simulation result shows the effectiveness of this algorithm.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face recognition algorithm combined with DCT, PCA and BPNN\",\"authors\":\"Guoliang Yang, Linjia Xu\",\"doi\":\"10.1109/ICACI.2012.6463254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides an integrated algorithm to deal with face recognition. It uses discrete cosine transform and principal component analysis to reduce dimensions and extract face features, and then trains and tests face images through the BP neural network classifier. It also seeks for other method such as the nearest neighbor classifier to have a comparison with BP neural network. Simulation result shows the effectiveness of this algorithm.\",\"PeriodicalId\":404759,\"journal\":{\"name\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACI.2012.6463254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种集成的人脸识别算法。采用离散余弦变换和主成分分析对人脸图像进行降维和特征提取,然后通过BP神经网络分类器对人脸图像进行训练和测试。并寻求其他方法如最近邻分类器与BP神经网络进行比较。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition algorithm combined with DCT, PCA and BPNN
This paper provides an integrated algorithm to deal with face recognition. It uses discrete cosine transform and principal component analysis to reduce dimensions and extract face features, and then trains and tests face images through the BP neural network classifier. It also seeks for other method such as the nearest neighbor classifier to have a comparison with BP neural network. Simulation result shows the effectiveness of this algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信