Patrick Garus, Joël Jung, Thomas Maugey, C. Guillemot
{"title":"为沉浸式视频编码绕过深度图传输","authors":"Patrick Garus, Joël Jung, Thomas Maugey, C. Guillemot","doi":"10.1109/PCS48520.2019.8954543","DOIUrl":null,"url":null,"abstract":"This paper addresses several downsides of the system under development in MPEG-I for coding and transmission of immersive media. We present a solution, which enables Depth-Image-Based Rendering for immersive video applications, while lifting the requirement of transmitting depth information. Instead, we estimate the depth information on the client-side from the transmitted views. The approach leads to an impressive rate saving (37.3% in average). Preserving perceptual quality in terms of MS-SSIM of synthesized views, it yields to 24.6% rate reduction for the same quality of reconstructed views after residue transmission under the MPEG-I common test conditions. Simultaneously, the required pixel rate, i.e. the number of pixels processed per second by the decoder, is reduced by 50% for any test sequence. To the author’s knowledge, this is the first time that such an approach is under consideration in the context of immersive video coding.","PeriodicalId":237809,"journal":{"name":"2019 Picture Coding Symposium (PCS)","volume":"154 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Bypassing Depth Maps Transmission For Immersive Video Coding\",\"authors\":\"Patrick Garus, Joël Jung, Thomas Maugey, C. Guillemot\",\"doi\":\"10.1109/PCS48520.2019.8954543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses several downsides of the system under development in MPEG-I for coding and transmission of immersive media. We present a solution, which enables Depth-Image-Based Rendering for immersive video applications, while lifting the requirement of transmitting depth information. Instead, we estimate the depth information on the client-side from the transmitted views. The approach leads to an impressive rate saving (37.3% in average). Preserving perceptual quality in terms of MS-SSIM of synthesized views, it yields to 24.6% rate reduction for the same quality of reconstructed views after residue transmission under the MPEG-I common test conditions. Simultaneously, the required pixel rate, i.e. the number of pixels processed per second by the decoder, is reduced by 50% for any test sequence. To the author’s knowledge, this is the first time that such an approach is under consideration in the context of immersive video coding.\",\"PeriodicalId\":237809,\"journal\":{\"name\":\"2019 Picture Coding Symposium (PCS)\",\"volume\":\"154 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Picture Coding Symposium (PCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS48520.2019.8954543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS48520.2019.8954543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bypassing Depth Maps Transmission For Immersive Video Coding
This paper addresses several downsides of the system under development in MPEG-I for coding and transmission of immersive media. We present a solution, which enables Depth-Image-Based Rendering for immersive video applications, while lifting the requirement of transmitting depth information. Instead, we estimate the depth information on the client-side from the transmitted views. The approach leads to an impressive rate saving (37.3% in average). Preserving perceptual quality in terms of MS-SSIM of synthesized views, it yields to 24.6% rate reduction for the same quality of reconstructed views after residue transmission under the MPEG-I common test conditions. Simultaneously, the required pixel rate, i.e. the number of pixels processed per second by the decoder, is reduced by 50% for any test sequence. To the author’s knowledge, this is the first time that such an approach is under consideration in the context of immersive video coding.