卷积神经网络在早期肺结节分类中的高效超参数优化

Lucas L. Lima, J. Ferreira, M. C. Oliveira
{"title":"卷积神经网络在早期肺结节分类中的高效超参数优化","authors":"Lucas L. Lima, J. Ferreira, M. C. Oliveira","doi":"10.1109/CBMS.2019.00039","DOIUrl":null,"url":null,"abstract":"Lung cancer is the leading cause of cancer mortality, accounting for approximately 20% of all cancer-related deaths. Patients diagnosed in the early stages have a 1-year survival rate of 81-85% while in an advanced stage have 15-19% chances of survival. Therefore, it is very necessary to diagnose lung cancer in early stages in malignant or benign, when the nodules are still very small, but it is a complex task even for experienced specialists and presents some challenges. To assist specialists, computer-aided diagnosis systems have been used to improve the accuracy in the diagnosis. In this paper, we exploit the use of a technique of hyperparameter tuning to find the best architecture of a Convolutional Neural Network to classify small pulmonary nodules balanced with diameter 5-10mm. The best results achieved were an error rate of 12%, sensitivity of 94%, specificity of 83%, accuracy of 88% and F-measure of 89%","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Hyperparameter Optimization of Convolutional Neural Networks on Classification of Early Pulmonary Nodules\",\"authors\":\"Lucas L. Lima, J. Ferreira, M. C. Oliveira\",\"doi\":\"10.1109/CBMS.2019.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung cancer is the leading cause of cancer mortality, accounting for approximately 20% of all cancer-related deaths. Patients diagnosed in the early stages have a 1-year survival rate of 81-85% while in an advanced stage have 15-19% chances of survival. Therefore, it is very necessary to diagnose lung cancer in early stages in malignant or benign, when the nodules are still very small, but it is a complex task even for experienced specialists and presents some challenges. To assist specialists, computer-aided diagnosis systems have been used to improve the accuracy in the diagnosis. In this paper, we exploit the use of a technique of hyperparameter tuning to find the best architecture of a Convolutional Neural Network to classify small pulmonary nodules balanced with diameter 5-10mm. The best results achieved were an error rate of 12%, sensitivity of 94%, specificity of 83%, accuracy of 88% and F-measure of 89%\",\"PeriodicalId\":311634,\"journal\":{\"name\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2019.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

肺癌是癌症死亡的主要原因,约占所有癌症相关死亡的20%。早期诊断的患者1年生存率为81-85%,而晚期患者的生存率为15-19%。因此,早期诊断肺癌是非常必要的,无论是恶性还是良性,此时的结节还很小,但即使是经验丰富的专家,这也是一项复杂的任务,并且存在一些挑战。为了协助专家,计算机辅助诊断系统已被用于提高诊断的准确性。在本文中,我们利用超参数调谐技术来寻找卷积神经网络的最佳架构,以分类直径为5-10mm的小肺结节。最佳结果为错误率为12%,灵敏度为94%,特异性为83%,准确度为88%,F-measure为89%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Hyperparameter Optimization of Convolutional Neural Networks on Classification of Early Pulmonary Nodules
Lung cancer is the leading cause of cancer mortality, accounting for approximately 20% of all cancer-related deaths. Patients diagnosed in the early stages have a 1-year survival rate of 81-85% while in an advanced stage have 15-19% chances of survival. Therefore, it is very necessary to diagnose lung cancer in early stages in malignant or benign, when the nodules are still very small, but it is a complex task even for experienced specialists and presents some challenges. To assist specialists, computer-aided diagnosis systems have been used to improve the accuracy in the diagnosis. In this paper, we exploit the use of a technique of hyperparameter tuning to find the best architecture of a Convolutional Neural Network to classify small pulmonary nodules balanced with diameter 5-10mm. The best results achieved were an error rate of 12%, sensitivity of 94%, specificity of 83%, accuracy of 88% and F-measure of 89%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信