正交切削过程剪切局部化的显式有限元研究

Denver Scott, J. Hong
{"title":"正交切削过程剪切局部化的显式有限元研究","authors":"Denver Scott, J. Hong","doi":"10.1115/imece1997-0540","DOIUrl":null,"url":null,"abstract":"\n The shear localization phenomena during serrated chip formation in high speed orthogonal metal cutting process have been studied by using the explicit finite element analysis. A three dimensional computational model has been developed for analyzing dynamic thermomechanical deformations of a thermally softening viscoplastic workpiece material subjected to various tool cutting speeds and tool rake angles. The shear band characteristics such as temperature contour, effective plastic strain, effective plastic strain rate, propagating speed and orientation are investigated for each cases. Cutting forces can be estimated by this 3D model. The predictions of the finite element analysis are shown that above a critical high cutting speeds the secondary shear of the chip on rake surface appear to be a negligible effect which indicated the chip segments can be separate completely due to extensive shear in the primary shear zone; this phenomena agreed well with the experimental observations. The numerical model presented here can easily applied to study the oblique cutting process.","PeriodicalId":407468,"journal":{"name":"Recent Advances in Solids/Structures and Application of Metallic Materials","volume":"178 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Explicit Finite Element Study of Shear Localization During Orthogonal Cutting Process\",\"authors\":\"Denver Scott, J. Hong\",\"doi\":\"10.1115/imece1997-0540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The shear localization phenomena during serrated chip formation in high speed orthogonal metal cutting process have been studied by using the explicit finite element analysis. A three dimensional computational model has been developed for analyzing dynamic thermomechanical deformations of a thermally softening viscoplastic workpiece material subjected to various tool cutting speeds and tool rake angles. The shear band characteristics such as temperature contour, effective plastic strain, effective plastic strain rate, propagating speed and orientation are investigated for each cases. Cutting forces can be estimated by this 3D model. The predictions of the finite element analysis are shown that above a critical high cutting speeds the secondary shear of the chip on rake surface appear to be a negligible effect which indicated the chip segments can be separate completely due to extensive shear in the primary shear zone; this phenomena agreed well with the experimental observations. The numerical model presented here can easily applied to study the oblique cutting process.\",\"PeriodicalId\":407468,\"journal\":{\"name\":\"Recent Advances in Solids/Structures and Application of Metallic Materials\",\"volume\":\"178 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Advances in Solids/Structures and Application of Metallic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1997-0540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Advances in Solids/Structures and Application of Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1997-0540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用显式有限元分析方法研究了高速正交金属切削过程中锯齿形切屑形成过程中的剪切局部化现象。建立了热软化粘塑性工件材料在不同刀具切削速度和刀具前倾角作用下的动态热力学变形的三维计算模型。研究了不同情况下的剪切带的温度轮廓、有效塑性应变、有效塑性应变速率、传播速度和方向等特征。通过该三维模型可以估计切削力。有限元分析的预测结果表明,在切削速度达到一定临界值以上时,切屑对前刀表面的二次剪切作用可以忽略不计,这表明由于主剪切带的广泛剪切作用,切屑段可以完全分离;这一现象与实验观察结果很吻合。所建立的数值模型易于应用于斜切削过程的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Explicit Finite Element Study of Shear Localization During Orthogonal Cutting Process
The shear localization phenomena during serrated chip formation in high speed orthogonal metal cutting process have been studied by using the explicit finite element analysis. A three dimensional computational model has been developed for analyzing dynamic thermomechanical deformations of a thermally softening viscoplastic workpiece material subjected to various tool cutting speeds and tool rake angles. The shear band characteristics such as temperature contour, effective plastic strain, effective plastic strain rate, propagating speed and orientation are investigated for each cases. Cutting forces can be estimated by this 3D model. The predictions of the finite element analysis are shown that above a critical high cutting speeds the secondary shear of the chip on rake surface appear to be a negligible effect which indicated the chip segments can be separate completely due to extensive shear in the primary shear zone; this phenomena agreed well with the experimental observations. The numerical model presented here can easily applied to study the oblique cutting process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信