{"title":"用于链路预测的弹簧电模型","authors":"Yana Kashinskaya, E. Samosvat, A. Artikov","doi":"10.1145/3289600.3290961","DOIUrl":null,"url":null,"abstract":"We propose a link prediction algorithm that is based on spring-electrical models. The idea to study these models came from the fact that spring-electrical models have been successfully used for networks visualization. A good network visualization usually implies that nodes similar in terms of network topology, e.g., connected and/or belonging to one cluster, tend to be visualized close to each other. Therefore, we assumed that the Euclidean distance between nodes in the obtained network layout correlates with a probability of a link between them. We evaluate the proposed method against several popular baselines and demonstrate its flexibility by applying it to undirected, directed and bipartite networks.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Spring-Electrical Models For Link Prediction\",\"authors\":\"Yana Kashinskaya, E. Samosvat, A. Artikov\",\"doi\":\"10.1145/3289600.3290961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a link prediction algorithm that is based on spring-electrical models. The idea to study these models came from the fact that spring-electrical models have been successfully used for networks visualization. A good network visualization usually implies that nodes similar in terms of network topology, e.g., connected and/or belonging to one cluster, tend to be visualized close to each other. Therefore, we assumed that the Euclidean distance between nodes in the obtained network layout correlates with a probability of a link between them. We evaluate the proposed method against several popular baselines and demonstrate its flexibility by applying it to undirected, directed and bipartite networks.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3290961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3290961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a link prediction algorithm that is based on spring-electrical models. The idea to study these models came from the fact that spring-electrical models have been successfully used for networks visualization. A good network visualization usually implies that nodes similar in terms of network topology, e.g., connected and/or belonging to one cluster, tend to be visualized close to each other. Therefore, we assumed that the Euclidean distance between nodes in the obtained network layout correlates with a probability of a link between them. We evaluate the proposed method against several popular baselines and demonstrate its flexibility by applying it to undirected, directed and bipartite networks.