{"title":"ke理论与kk理论的比较","authors":"R. Meyer","doi":"10.4171/JNCG/256","DOIUrl":null,"url":null,"abstract":"We show that the character from the bivariant K-theory KE^G introduced by Dumitrascu to E^G factors through Kasparov's KK^G for any locally compact group G. Hence KE^G contains KK^G as a direct summand.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of KE-Theory and KK-Theory\",\"authors\":\"R. Meyer\",\"doi\":\"10.4171/JNCG/256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the character from the bivariant K-theory KE^G introduced by Dumitrascu to E^G factors through Kasparov's KK^G for any locally compact group G. Hence KE^G contains KK^G as a direct summand.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JNCG/256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JNCG/256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the character from the bivariant K-theory KE^G introduced by Dumitrascu to E^G factors through Kasparov's KK^G for any locally compact group G. Hence KE^G contains KK^G as a direct summand.