{"title":"基于距离的元特征在自动文本分类中的深入利用","authors":"Sérgio D. Canuto, Marcos André Gonçalves, T. Rosa","doi":"10.5753/sbbd_estendido.2021.18184","DOIUrl":null,"url":null,"abstract":"The definition of a set of informative features capable of representing and discriminating documents is paramount for the task of automatically classifying documents. In this doctoral dissertation, we present the most comprehensive study so far on the role of meta-features (high-level features built from lower-level ones) as an alternative for representing documents. We start by proposing new sets of (meta-)features that exploit distance measures in the original (bag-of-words) feature space to summarize potentially complex relationships between documents. We then (i) analyze the discriminative power of such meta-features with novel multi-objective feature selection strategies; (ii) provide new GPU implementations to reduce computational time; (iii) enrich distance relationships with labeled or context-specific information; (iv) adapt the proposed meta-features for tasks as hard as sentiment analysis. Our experimental results show that our meta-features can achieve remarkable classification results by distance exploitation, being the state-of-the-art in many situations and scenarios.","PeriodicalId":232860,"journal":{"name":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Thorough Exploitation of Distance-Based Meta-Features for Automated Text Classification\",\"authors\":\"Sérgio D. Canuto, Marcos André Gonçalves, T. Rosa\",\"doi\":\"10.5753/sbbd_estendido.2021.18184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The definition of a set of informative features capable of representing and discriminating documents is paramount for the task of automatically classifying documents. In this doctoral dissertation, we present the most comprehensive study so far on the role of meta-features (high-level features built from lower-level ones) as an alternative for representing documents. We start by proposing new sets of (meta-)features that exploit distance measures in the original (bag-of-words) feature space to summarize potentially complex relationships between documents. We then (i) analyze the discriminative power of such meta-features with novel multi-objective feature selection strategies; (ii) provide new GPU implementations to reduce computational time; (iii) enrich distance relationships with labeled or context-specific information; (iv) adapt the proposed meta-features for tasks as hard as sentiment analysis. Our experimental results show that our meta-features can achieve remarkable classification results by distance exploitation, being the state-of-the-art in many situations and scenarios.\",\"PeriodicalId\":232860,\"journal\":{\"name\":\"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbbd_estendido.2021.18184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais Estendidos do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD Estendido 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbbd_estendido.2021.18184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Thorough Exploitation of Distance-Based Meta-Features for Automated Text Classification
The definition of a set of informative features capable of representing and discriminating documents is paramount for the task of automatically classifying documents. In this doctoral dissertation, we present the most comprehensive study so far on the role of meta-features (high-level features built from lower-level ones) as an alternative for representing documents. We start by proposing new sets of (meta-)features that exploit distance measures in the original (bag-of-words) feature space to summarize potentially complex relationships between documents. We then (i) analyze the discriminative power of such meta-features with novel multi-objective feature selection strategies; (ii) provide new GPU implementations to reduce computational time; (iii) enrich distance relationships with labeled or context-specific information; (iv) adapt the proposed meta-features for tasks as hard as sentiment analysis. Our experimental results show that our meta-features can achieve remarkable classification results by distance exploitation, being the state-of-the-art in many situations and scenarios.