Ruchaneewan Susomboon, D. Raicu, J. Furst, D. Channin
{"title":"计算机断层扫描图像中单器官自动分割","authors":"Ruchaneewan Susomboon, D. Raicu, J. Furst, D. Channin","doi":"10.1109/ICDM.2006.24","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hybrid approach for automatic single-organ segmentation in computed tomography (CT) data. The approach consists of three stages: first, a probability image of the organ of interest is obtained by applying a binary classification model obtained using pixel-based texture features; second, an adaptive split-and-merge segmentation algorithm is applied on the organ probability image to remove the noise introduced by the misclassified pixels; and third, the segmented organ's boundaries from the previous stage are iteratively refined using a region growing algorithm. While we applied our approach for liver segmentation in 2-D CT images, a challenging and important task in many medical applications, the proposed approach can be applied for the segmentation of any other organ in CT images. Moreover, the proposed approach can be extended to perform automatic multiple organ segmentation and to build context-sensitive reporting tools for computer-aided diagnosis applications.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Automatic Single-Organ Segmentation in Computed Tomography Images\",\"authors\":\"Ruchaneewan Susomboon, D. Raicu, J. Furst, D. Channin\",\"doi\":\"10.1109/ICDM.2006.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a hybrid approach for automatic single-organ segmentation in computed tomography (CT) data. The approach consists of three stages: first, a probability image of the organ of interest is obtained by applying a binary classification model obtained using pixel-based texture features; second, an adaptive split-and-merge segmentation algorithm is applied on the organ probability image to remove the noise introduced by the misclassified pixels; and third, the segmented organ's boundaries from the previous stage are iteratively refined using a region growing algorithm. While we applied our approach for liver segmentation in 2-D CT images, a challenging and important task in many medical applications, the proposed approach can be applied for the segmentation of any other organ in CT images. Moreover, the proposed approach can be extended to perform automatic multiple organ segmentation and to build context-sensitive reporting tools for computer-aided diagnosis applications.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Single-Organ Segmentation in Computed Tomography Images
In this paper, we propose a hybrid approach for automatic single-organ segmentation in computed tomography (CT) data. The approach consists of three stages: first, a probability image of the organ of interest is obtained by applying a binary classification model obtained using pixel-based texture features; second, an adaptive split-and-merge segmentation algorithm is applied on the organ probability image to remove the noise introduced by the misclassified pixels; and third, the segmented organ's boundaries from the previous stage are iteratively refined using a region growing algorithm. While we applied our approach for liver segmentation in 2-D CT images, a challenging and important task in many medical applications, the proposed approach can be applied for the segmentation of any other organ in CT images. Moreover, the proposed approach can be extended to perform automatic multiple organ segmentation and to build context-sensitive reporting tools for computer-aided diagnosis applications.