双螺旋桨爬壁机器人气动特性分析

Yi Wei, Qingfang Zhang, Xueshan Gao, Peng Liang, Mingkang Li, Kejie Li
{"title":"双螺旋桨爬壁机器人气动特性分析","authors":"Yi Wei, Qingfang Zhang, Xueshan Gao, Peng Liang, Mingkang Li, Kejie Li","doi":"10.1109/ICMA54519.2022.9855936","DOIUrl":null,"url":null,"abstract":"A wall-climbing robot is a mobile robot that operates on a vertical wall. A wall-climbing robot with dual-propeller is proposed in this paper, in which the aerodynamics of the propeller is an important research part. Therefore, the aerodynamics of the propeller is simulated by ANSYS Fluent and experimentally analyzed in this paper. First, the aerodynamic simulation analysis of the single rotor and the double rotor is carried out in this paper, and then the tensile test experiment of the single propeller is carried out by using the pulling machine. Finally, an experimental platform for the whole machine was built, and the tensile test experiment was carried out on the double propellers. It is concluded that the aerodynamic forces generated by the two rotors are not linearly superimposed due to the airflow interference, and the rotational speed of the rotors and the distance between the rotor platforms all affect the magnitude of the force.","PeriodicalId":120073,"journal":{"name":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamic Analysis of a Wall-Climbing Robot with Dual-propeller\",\"authors\":\"Yi Wei, Qingfang Zhang, Xueshan Gao, Peng Liang, Mingkang Li, Kejie Li\",\"doi\":\"10.1109/ICMA54519.2022.9855936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wall-climbing robot is a mobile robot that operates on a vertical wall. A wall-climbing robot with dual-propeller is proposed in this paper, in which the aerodynamics of the propeller is an important research part. Therefore, the aerodynamics of the propeller is simulated by ANSYS Fluent and experimentally analyzed in this paper. First, the aerodynamic simulation analysis of the single rotor and the double rotor is carried out in this paper, and then the tensile test experiment of the single propeller is carried out by using the pulling machine. Finally, an experimental platform for the whole machine was built, and the tensile test experiment was carried out on the double propellers. It is concluded that the aerodynamic forces generated by the two rotors are not linearly superimposed due to the airflow interference, and the rotational speed of the rotors and the distance between the rotor platforms all affect the magnitude of the force.\",\"PeriodicalId\":120073,\"journal\":{\"name\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA54519.2022.9855936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA54519.2022.9855936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

爬墙机器人是一种在垂直墙壁上工作的移动机器人。提出了一种双螺旋桨爬壁机器人,其中螺旋桨的空气动力学是研究的一个重要部分。因此,本文采用ANSYS Fluent软件对螺旋桨的空气动力学进行了仿真,并进行了实验分析。本文首先对单桨和双桨进行了气动仿真分析,然后利用拉拔机对单桨进行了拉伸试验实验。最后搭建了整机实验平台,对双螺旋桨进行了拉伸试验。结果表明,由于气流的干扰,两转子产生的气动力不是线性叠加的,转子的转速和转子平台之间的距离都会影响气动力的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerodynamic Analysis of a Wall-Climbing Robot with Dual-propeller
A wall-climbing robot is a mobile robot that operates on a vertical wall. A wall-climbing robot with dual-propeller is proposed in this paper, in which the aerodynamics of the propeller is an important research part. Therefore, the aerodynamics of the propeller is simulated by ANSYS Fluent and experimentally analyzed in this paper. First, the aerodynamic simulation analysis of the single rotor and the double rotor is carried out in this paper, and then the tensile test experiment of the single propeller is carried out by using the pulling machine. Finally, an experimental platform for the whole machine was built, and the tensile test experiment was carried out on the double propellers. It is concluded that the aerodynamic forces generated by the two rotors are not linearly superimposed due to the airflow interference, and the rotational speed of the rotors and the distance between the rotor platforms all affect the magnitude of the force.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信