若干次项的优化与np_r完备性

P. Pébay, J. Rojas, David C. Thompson
{"title":"若干次项的优化与np_r完备性","authors":"P. Pébay, J. Rojas, David C. Thompson","doi":"10.1145/1577190.1577212","DOIUrl":null,"url":null,"abstract":"We give a high precision polynomial-time approximation scheme for the supremum of any honest n-variate (n+2)-nomial with a constant term, allowing real exponents as well as real coefficients. Our complexity bounds count field operations and inequality checks, and are polynomial in n and the logarithm of a certain condition number. For the special case of polynomials (i.e., integer exponents), the log of our condition number is sub-quadratic in the sparse size. The best previous complexity bounds were exponential in the size, even for n fixed. Along the way, we partially extend the theory of A-discriminants to real exponents and exponential sums, and find new and natural NPR-complete problems.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimization and NP_R-completeness of certain fewnomials\",\"authors\":\"P. Pébay, J. Rojas, David C. Thompson\",\"doi\":\"10.1145/1577190.1577212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a high precision polynomial-time approximation scheme for the supremum of any honest n-variate (n+2)-nomial with a constant term, allowing real exponents as well as real coefficients. Our complexity bounds count field operations and inequality checks, and are polynomial in n and the logarithm of a certain condition number. For the special case of polynomials (i.e., integer exponents), the log of our condition number is sub-quadratic in the sparse size. The best previous complexity bounds were exponential in the size, even for n fixed. Along the way, we partially extend the theory of A-discriminants to real exponents and exponential sums, and find new and natural NPR-complete problems.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1577190.1577212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1577190.1577212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们给出了一个高精度的多项式时间逼近格式,用于任意具有常数项的可靠n变量(n+2)-多项式的极值,允许实数指数和实数系数。我们的复杂度界限计算域运算和不等式检验,并且是n的多项式和某个条件数的对数。对于多项式的特殊情况(即整数指数),我们的条件数的对数在稀疏大小上是次二次的。以前最好的复杂度界限是指数级的,即使n是固定的。在此过程中,我们将a -判别式理论部分推广到实数指数和指数和,并发现了新的自然的npr完全问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization and NP_R-completeness of certain fewnomials
We give a high precision polynomial-time approximation scheme for the supremum of any honest n-variate (n+2)-nomial with a constant term, allowing real exponents as well as real coefficients. Our complexity bounds count field operations and inequality checks, and are polynomial in n and the logarithm of a certain condition number. For the special case of polynomials (i.e., integer exponents), the log of our condition number is sub-quadratic in the sparse size. The best previous complexity bounds were exponential in the size, even for n fixed. Along the way, we partially extend the theory of A-discriminants to real exponents and exponential sums, and find new and natural NPR-complete problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信