线性博弈论估计的均方鲁棒性

R. Lakshminarayanan, K. Giridhar
{"title":"线性博弈论估计的均方鲁棒性","authors":"R. Lakshminarayanan, K. Giridhar","doi":"10.1109/NCC.2010.5430185","DOIUrl":null,"url":null,"abstract":"Robust signal processing methods deal with design of estimators that exhibit resilience to uncertainties in the user specified inputs regarding the operating conditions. The H∞ estimator was proposed as a possible replacement to the Kalman filter while operating in the presence of uncertainties in the statistical and parametric inputs to the filter. The results in this paper compare the Mean Squared Error (MSE) performance (or MSE robustness) of the H∞ estimator and the Kalman filter under conditions of misspecified statistics. This study would facilitate the user to choose the better estimator under the given operating conditions. The results presented here show that under different operating conditions both the filters conditionally dominate one over the other.","PeriodicalId":130953,"journal":{"name":"2010 National Conference On Communications (NCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean square robustness of linear game theoretic estimators\",\"authors\":\"R. Lakshminarayanan, K. Giridhar\",\"doi\":\"10.1109/NCC.2010.5430185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust signal processing methods deal with design of estimators that exhibit resilience to uncertainties in the user specified inputs regarding the operating conditions. The H∞ estimator was proposed as a possible replacement to the Kalman filter while operating in the presence of uncertainties in the statistical and parametric inputs to the filter. The results in this paper compare the Mean Squared Error (MSE) performance (or MSE robustness) of the H∞ estimator and the Kalman filter under conditions of misspecified statistics. This study would facilitate the user to choose the better estimator under the given operating conditions. The results presented here show that under different operating conditions both the filters conditionally dominate one over the other.\",\"PeriodicalId\":130953,\"journal\":{\"name\":\"2010 National Conference On Communications (NCC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 National Conference On Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2010.5430185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 National Conference On Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2010.5430185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鲁棒信号处理方法涉及估计器的设计,该估计器在用户指定的有关操作条件的输入中表现出对不确定性的弹性。提出了H∞估计器作为卡尔曼滤波器的可能替代品,同时在滤波器的统计和参数输入存在不确定性的情况下运行。本文的结果比较了H∞估计器和卡尔曼滤波器在统计量不确定条件下的均方误差(MSE)性能(或MSE鲁棒性)。这项研究将有助于用户在给定的操作条件下选择更好的估计器。这里给出的结果表明,在不同的操作条件下,两个滤波器有条件地占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean square robustness of linear game theoretic estimators
Robust signal processing methods deal with design of estimators that exhibit resilience to uncertainties in the user specified inputs regarding the operating conditions. The H∞ estimator was proposed as a possible replacement to the Kalman filter while operating in the presence of uncertainties in the statistical and parametric inputs to the filter. The results in this paper compare the Mean Squared Error (MSE) performance (or MSE robustness) of the H∞ estimator and the Kalman filter under conditions of misspecified statistics. This study would facilitate the user to choose the better estimator under the given operating conditions. The results presented here show that under different operating conditions both the filters conditionally dominate one over the other.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信