基于马尔可夫切换区间的波动率模型及其在波动率调整VAR估计中的应用

Chunchou Wu, Yi-Kai Su, D. Miao
{"title":"基于马尔可夫切换区间的波动率模型及其在波动率调整VAR估计中的应用","authors":"Chunchou Wu, Yi-Kai Su, D. Miao","doi":"10.2139/ssrn.2020122","DOIUrl":null,"url":null,"abstract":"We propose a more flexible range-based volatility model which can capture volatility process better than conventional GARCH approach. Considering the regime switching process is appropriate for dealing the structure change embedded in the time series data. Range-based volatility CARR model with Markov-switching structure can assist us to describe the effect for exogenous shock to market data. After the data fitting and VaR estimation, we conclude that the range-based volatility method is better than the return-based GARCH model in volatility fitting. In particular, incorporating the possibility of regime switching into volatility process can boost the efficiency for VaR estimation. We also present an empirical application for demonstrating our model could characterize the unexpected switching of volatility process. Furthermore, comparing with non-regime switching volatility model, our model outperforms other alternatives on the estimation of volatility adjusted historical VaR.","PeriodicalId":187082,"journal":{"name":"ERN: Financial Market Volatility (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Markov-Switching Range-Based Volatility Model with Applications in Volatility Adjusted VAR Estimation\",\"authors\":\"Chunchou Wu, Yi-Kai Su, D. Miao\",\"doi\":\"10.2139/ssrn.2020122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a more flexible range-based volatility model which can capture volatility process better than conventional GARCH approach. Considering the regime switching process is appropriate for dealing the structure change embedded in the time series data. Range-based volatility CARR model with Markov-switching structure can assist us to describe the effect for exogenous shock to market data. After the data fitting and VaR estimation, we conclude that the range-based volatility method is better than the return-based GARCH model in volatility fitting. In particular, incorporating the possibility of regime switching into volatility process can boost the efficiency for VaR estimation. We also present an empirical application for demonstrating our model could characterize the unexpected switching of volatility process. Furthermore, comparing with non-regime switching volatility model, our model outperforms other alternatives on the estimation of volatility adjusted historical VaR.\",\"PeriodicalId\":187082,\"journal\":{\"name\":\"ERN: Financial Market Volatility (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Financial Market Volatility (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2020122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Financial Market Volatility (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2020122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个更灵活的基于区间的波动率模型,它比传统的GARCH方法能更好地捕捉波动率过程。认为状态切换过程适用于处理嵌入在时间序列数据中的结构变化。基于区间波动率的马尔可夫切换结构CARR模型可以帮助我们描述外生冲击对市场数据的影响。经过数据拟合和VaR估计,得出基于区间的波动率拟合优于基于收益的GARCH模型的结论。特别是,在波动过程中加入状态转换的可能性,可以提高VaR估计的效率。我们还提出了一个经验应用,证明我们的模型可以表征波动过程的意外切换。此外,与非制度切换波动率模型相比,我们的模型在估计波动率调整后的历史VaR方面优于其他替代模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Markov-Switching Range-Based Volatility Model with Applications in Volatility Adjusted VAR Estimation
We propose a more flexible range-based volatility model which can capture volatility process better than conventional GARCH approach. Considering the regime switching process is appropriate for dealing the structure change embedded in the time series data. Range-based volatility CARR model with Markov-switching structure can assist us to describe the effect for exogenous shock to market data. After the data fitting and VaR estimation, we conclude that the range-based volatility method is better than the return-based GARCH model in volatility fitting. In particular, incorporating the possibility of regime switching into volatility process can boost the efficiency for VaR estimation. We also present an empirical application for demonstrating our model could characterize the unexpected switching of volatility process. Furthermore, comparing with non-regime switching volatility model, our model outperforms other alternatives on the estimation of volatility adjusted historical VaR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信