后向欧拉多速率公式的稳定性

S. Skelboe
{"title":"后向欧拉多速率公式的稳定性","authors":"S. Skelboe","doi":"10.1137/0910059","DOIUrl":null,"url":null,"abstract":"Stability properties of multirate formulas cannot be analyzed by a scalar test equation but require at least one equation for each different steplength. This paper generalizes the concept of absolute stability and A-stability for backward Euler multirate formulas. Stability theorems for multirate methods with two and three different steplengths are given, while a general result for an arbitrary number of different steplengths is the topic of future research.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Stability properties of backward euler multirate formulas\",\"authors\":\"S. Skelboe\",\"doi\":\"10.1137/0910059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability properties of multirate formulas cannot be analyzed by a scalar test equation but require at least one equation for each different steplength. This paper generalizes the concept of absolute stability and A-stability for backward Euler multirate formulas. Stability theorems for multirate methods with two and three different steplengths are given, while a general result for an arbitrary number of different steplengths is the topic of future research.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

多速率公式的稳定性不能用一个标量测试方程来分析,而需要对每个不同步长至少有一个方程。推广了后向欧拉多速率公式的绝对稳定性和a -稳定性的概念。给出了具有二步长和三步长的多速率方法的稳定性定理,而对于任意数目的不同步长的一般结果是未来研究的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability properties of backward euler multirate formulas
Stability properties of multirate formulas cannot be analyzed by a scalar test equation but require at least one equation for each different steplength. This paper generalizes the concept of absolute stability and A-stability for backward Euler multirate formulas. Stability theorems for multirate methods with two and three different steplengths are given, while a general result for an arbitrary number of different steplengths is the topic of future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信