Jianping Li, Sufen Wang, Jyad M Ayoub, Catherine F Yang
{"title":"二氧化钛溶胶-凝胶衍生的普鲁士蓝纳米颗粒葡萄糖生物传感器","authors":"Jianping Li, Sufen Wang, Jyad M Ayoub, Catherine F Yang","doi":"10.1109/SAS.2007.374361","DOIUrl":null,"url":null,"abstract":"A highly sensitive and selective glucose biosensor was designed by immobilizing glucose oxidase (GOD) on a Prussian blue nanoparticles (nanoPBs) modified glassy carbon electrode using a novel titanic dioxide Solution-Gelation (TiO2-Sol-Gel) technique. Glucose measurement was based on the level of hydrogen peroxide (H2O2) produced concomitantly with the reaction of glucose and oxygen mediated by GOD. NanoPBs catalyze this reaction efficiently by reducing the reaction potential and improving GOD activity. The biosensor showed voltaic response to H2O2 in a linear range of 5.0 times 10-7 to 4.0 times 10-4 mol/L and amperometric response to glucose in a linear range of 1.0 times 10-4 to 2.4 times 10-2 mmol/L with fine reproducibility (relative standard deviation varied from 3.6% to 4.2%). This nanoPBs-based biosensor also exhibits high recovery (97% ~ 101.5%) for measuring blood glucose levels and the developed method is applicable for large-scaled manufacturing of disposable biosensors.","PeriodicalId":137779,"journal":{"name":"2007 IEEE Sensors Applications Symposium","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A TiO2-Sol-Gel Derived Prussian Blue Nanoparticles-Based Glucose Biosensor\",\"authors\":\"Jianping Li, Sufen Wang, Jyad M Ayoub, Catherine F Yang\",\"doi\":\"10.1109/SAS.2007.374361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly sensitive and selective glucose biosensor was designed by immobilizing glucose oxidase (GOD) on a Prussian blue nanoparticles (nanoPBs) modified glassy carbon electrode using a novel titanic dioxide Solution-Gelation (TiO2-Sol-Gel) technique. Glucose measurement was based on the level of hydrogen peroxide (H2O2) produced concomitantly with the reaction of glucose and oxygen mediated by GOD. NanoPBs catalyze this reaction efficiently by reducing the reaction potential and improving GOD activity. The biosensor showed voltaic response to H2O2 in a linear range of 5.0 times 10-7 to 4.0 times 10-4 mol/L and amperometric response to glucose in a linear range of 1.0 times 10-4 to 2.4 times 10-2 mmol/L with fine reproducibility (relative standard deviation varied from 3.6% to 4.2%). This nanoPBs-based biosensor also exhibits high recovery (97% ~ 101.5%) for measuring blood glucose levels and the developed method is applicable for large-scaled manufacturing of disposable biosensors.\",\"PeriodicalId\":137779,\"journal\":{\"name\":\"2007 IEEE Sensors Applications Symposium\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Sensors Applications Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2007.374361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Sensors Applications Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2007.374361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A TiO2-Sol-Gel Derived Prussian Blue Nanoparticles-Based Glucose Biosensor
A highly sensitive and selective glucose biosensor was designed by immobilizing glucose oxidase (GOD) on a Prussian blue nanoparticles (nanoPBs) modified glassy carbon electrode using a novel titanic dioxide Solution-Gelation (TiO2-Sol-Gel) technique. Glucose measurement was based on the level of hydrogen peroxide (H2O2) produced concomitantly with the reaction of glucose and oxygen mediated by GOD. NanoPBs catalyze this reaction efficiently by reducing the reaction potential and improving GOD activity. The biosensor showed voltaic response to H2O2 in a linear range of 5.0 times 10-7 to 4.0 times 10-4 mol/L and amperometric response to glucose in a linear range of 1.0 times 10-4 to 2.4 times 10-2 mmol/L with fine reproducibility (relative standard deviation varied from 3.6% to 4.2%). This nanoPBs-based biosensor also exhibits high recovery (97% ~ 101.5%) for measuring blood glucose levels and the developed method is applicable for large-scaled manufacturing of disposable biosensors.