基于小波变换的移动目标分数阶轨迹参数滤波

O. S. Amosov, S. G. Baena
{"title":"基于小波变换的移动目标分数阶轨迹参数滤波","authors":"O. S. Amosov, S. G. Baena","doi":"10.1109/ICCA.2017.8003045","DOIUrl":null,"url":null,"abstract":"Modeling and filtering of a mobile object stochastic trajectory on the basis of fractal Wiener process taking into account the Hurst indicator are offered. For numerical realization of this processes the wavelet based decomposition is used. The peculiarities of trajectory parameters estimation by using Kalman filter and the wavelet algorithm are investigated. The illustrating examples are given.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"154 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Wavelet based filtering of mobile object fractional trajectory parameters\",\"authors\":\"O. S. Amosov, S. G. Baena\",\"doi\":\"10.1109/ICCA.2017.8003045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and filtering of a mobile object stochastic trajectory on the basis of fractal Wiener process taking into account the Hurst indicator are offered. For numerical realization of this processes the wavelet based decomposition is used. The peculiarities of trajectory parameters estimation by using Kalman filter and the wavelet algorithm are investigated. The illustrating examples are given.\",\"PeriodicalId\":379025,\"journal\":{\"name\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"volume\":\"154 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2017.8003045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于分形维纳过程的考虑赫斯特指标的移动目标随机轨迹建模与滤波方法。为了数值实现这一过程,采用了基于小波的分解方法。研究了卡尔曼滤波和小波算法在弹道参数估计中的特点。并给出了举例说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wavelet based filtering of mobile object fractional trajectory parameters
Modeling and filtering of a mobile object stochastic trajectory on the basis of fractal Wiener process taking into account the Hurst indicator are offered. For numerical realization of this processes the wavelet based decomposition is used. The peculiarities of trajectory parameters estimation by using Kalman filter and the wavelet algorithm are investigated. The illustrating examples are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信