{"title":"基于小波变换的移动目标分数阶轨迹参数滤波","authors":"O. S. Amosov, S. G. Baena","doi":"10.1109/ICCA.2017.8003045","DOIUrl":null,"url":null,"abstract":"Modeling and filtering of a mobile object stochastic trajectory on the basis of fractal Wiener process taking into account the Hurst indicator are offered. For numerical realization of this processes the wavelet based decomposition is used. The peculiarities of trajectory parameters estimation by using Kalman filter and the wavelet algorithm are investigated. The illustrating examples are given.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"154 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Wavelet based filtering of mobile object fractional trajectory parameters\",\"authors\":\"O. S. Amosov, S. G. Baena\",\"doi\":\"10.1109/ICCA.2017.8003045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modeling and filtering of a mobile object stochastic trajectory on the basis of fractal Wiener process taking into account the Hurst indicator are offered. For numerical realization of this processes the wavelet based decomposition is used. The peculiarities of trajectory parameters estimation by using Kalman filter and the wavelet algorithm are investigated. The illustrating examples are given.\",\"PeriodicalId\":379025,\"journal\":{\"name\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"volume\":\"154 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IEEE International Conference on Control & Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2017.8003045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wavelet based filtering of mobile object fractional trajectory parameters
Modeling and filtering of a mobile object stochastic trajectory on the basis of fractal Wiener process taking into account the Hurst indicator are offered. For numerical realization of this processes the wavelet based decomposition is used. The peculiarities of trajectory parameters estimation by using Kalman filter and the wavelet algorithm are investigated. The illustrating examples are given.