支持ai的SD-WAN:以强化学习为例

A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre
{"title":"支持ai的SD-WAN:以强化学习为例","authors":"A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre","doi":"10.1109/LATINCOM56090.2022.10000667","DOIUrl":null,"url":null,"abstract":"Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI-enabled SD-WAN: the case of Reinforcement Learning\",\"authors\":\"A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre\",\"doi\":\"10.1109/LATINCOM56090.2022.10000667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.\",\"PeriodicalId\":221354,\"journal\":{\"name\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM56090.2022.10000667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

广域网基础设施中的流量工程对于有效管理昂贵的资源和保证应用程序可接受的QoS水平至关重要。SD-WAN最近成为管理企业wan的关键解决方案,允许对流量进行细粒度、基于策略的控制。在本文中,我们提出了一个基于强化学习的框架,用于有效利用连接公司分布式站点的多个渠道。我们在一个具有集中式SDN控制器的现实仿真网络中对其进行了评估。结果表明,在高负载条件下,与基准方法相比,我们的方法导致QoS策略违规数量减少33%。还可以获得更小的平均延迟和连接成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-enabled SD-WAN: the case of Reinforcement Learning
Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信