A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre
{"title":"支持ai的SD-WAN:以强化学习为例","authors":"A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre","doi":"10.1109/LATINCOM56090.2022.10000667","DOIUrl":null,"url":null,"abstract":"Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.","PeriodicalId":221354,"journal":{"name":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI-enabled SD-WAN: the case of Reinforcement Learning\",\"authors\":\"A. Botta, R. Canonico, Annalisa Navarro, S. Ruggiero, G. Ventre\",\"doi\":\"10.1109/LATINCOM56090.2022.10000667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.\",\"PeriodicalId\":221354,\"journal\":{\"name\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Latin-American Conference on Communications (LATINCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LATINCOM56090.2022.10000667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM56090.2022.10000667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI-enabled SD-WAN: the case of Reinforcement Learning
Traffic Engineering in WAN infrastructures is critical for the efficient management of costly resources and for guaranteeing acceptable QoS levels to applications. SD-WAN has recently emerged as a key solution to manage enterprise WANs, allowing fine-grained, policy-based control over traffic flows. In this paper, we propose a framework based on Reinforcement Learning for the effective use of multiple channels connecting distributed sites of a company. We evaluate it in a realistic, emulated network with a centralized SDN controller. Results show that under heavy load conditions, our approach leads to a 33% reduction in the number of QoS policy violations compared to a benchmark approach. Smaller average latency and connectivity costs are also obtained.