Pham Tran Anh Quang, Youcef Magnouche, Jérémie Leguay, Xuan Gong, Feng Zeng
{"title":"负载平衡模型预测控制","authors":"Pham Tran Anh Quang, Youcef Magnouche, Jérémie Leguay, Xuan Gong, Feng Zeng","doi":"10.1145/3405837.3411383","DOIUrl":null,"url":null,"abstract":"To improve bandwidth utilization, flow aggregates are typically split over multiple paths. This demonstration shows that load balancing can be enhanced by exploiting traffic predictions. We present a Model Predictive Control (MPC) based load balancing framework that optimizes the maximum link utilization to proactively mitigate congestion.","PeriodicalId":396272,"journal":{"name":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model predictive control for load balancing\",\"authors\":\"Pham Tran Anh Quang, Youcef Magnouche, Jérémie Leguay, Xuan Gong, Feng Zeng\",\"doi\":\"10.1145/3405837.3411383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve bandwidth utilization, flow aggregates are typically split over multiple paths. This demonstration shows that load balancing can be enhanced by exploiting traffic predictions. We present a Model Predictive Control (MPC) based load balancing framework that optimizes the maximum link utilization to proactively mitigate congestion.\",\"PeriodicalId\":396272,\"journal\":{\"name\":\"Proceedings of the SIGCOMM '20 Poster and Demo Sessions\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCOMM '20 Poster and Demo Sessions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3405837.3411383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405837.3411383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To improve bandwidth utilization, flow aggregates are typically split over multiple paths. This demonstration shows that load balancing can be enhanced by exploiting traffic predictions. We present a Model Predictive Control (MPC) based load balancing framework that optimizes the maximum link utilization to proactively mitigate congestion.