负载平衡模型预测控制

Pham Tran Anh Quang, Youcef Magnouche, Jérémie Leguay, Xuan Gong, Feng Zeng
{"title":"负载平衡模型预测控制","authors":"Pham Tran Anh Quang, Youcef Magnouche, Jérémie Leguay, Xuan Gong, Feng Zeng","doi":"10.1145/3405837.3411383","DOIUrl":null,"url":null,"abstract":"To improve bandwidth utilization, flow aggregates are typically split over multiple paths. This demonstration shows that load balancing can be enhanced by exploiting traffic predictions. We present a Model Predictive Control (MPC) based load balancing framework that optimizes the maximum link utilization to proactively mitigate congestion.","PeriodicalId":396272,"journal":{"name":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model predictive control for load balancing\",\"authors\":\"Pham Tran Anh Quang, Youcef Magnouche, Jérémie Leguay, Xuan Gong, Feng Zeng\",\"doi\":\"10.1145/3405837.3411383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve bandwidth utilization, flow aggregates are typically split over multiple paths. This demonstration shows that load balancing can be enhanced by exploiting traffic predictions. We present a Model Predictive Control (MPC) based load balancing framework that optimizes the maximum link utilization to proactively mitigate congestion.\",\"PeriodicalId\":396272,\"journal\":{\"name\":\"Proceedings of the SIGCOMM '20 Poster and Demo Sessions\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIGCOMM '20 Poster and Demo Sessions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3405837.3411383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '20 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3405837.3411383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高带宽利用率,流量聚合通常在多条路径上进行拆分。这个演示表明,可以通过利用流量预测来增强负载平衡。我们提出了一个基于模型预测控制(MPC)的负载均衡框架,该框架优化了最大链路利用率,以主动缓解拥塞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model predictive control for load balancing
To improve bandwidth utilization, flow aggregates are typically split over multiple paths. This demonstration shows that load balancing can be enhanced by exploiting traffic predictions. We present a Model Predictive Control (MPC) based load balancing framework that optimizes the maximum link utilization to proactively mitigate congestion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信