椭圆型双曲Davey-Stewartson系统的解析平滑效应及全局存在性

N. Hayashi, H. Uchida, P. Naumkin
{"title":"椭圆型双曲Davey-Stewartson系统的解析平滑效应及全局存在性","authors":"N. Hayashi, H. Uchida, P. Naumkin","doi":"10.1109/DD.1999.816184","DOIUrl":null,"url":null,"abstract":"We study the elliptic-hyperbolic Davey-Stewartson equation which is considered as a nonlocal nonlinear Schrodinger equation with nonlinearities involving derivatives of unknown function in two space dimensions. We show that solutions become analytic for any t/spl ne/0 with respect to x if the data are small and decay exponentially when |x|/spl rarr//spl infin/.","PeriodicalId":275823,"journal":{"name":"International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367)","volume":"123 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytic smoothing effect and global existence for elliptic hyperbolic Davey-Stewartson system\",\"authors\":\"N. Hayashi, H. Uchida, P. Naumkin\",\"doi\":\"10.1109/DD.1999.816184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the elliptic-hyperbolic Davey-Stewartson equation which is considered as a nonlocal nonlinear Schrodinger equation with nonlinearities involving derivatives of unknown function in two space dimensions. We show that solutions become analytic for any t/spl ne/0 with respect to x if the data are small and decay exponentially when |x|/spl rarr//spl infin/.\",\"PeriodicalId\":275823,\"journal\":{\"name\":\"International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367)\",\"volume\":\"123 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.1999.816184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Seminar. Day on Diffraction. Proceedings (IEEE Cat. No.99EX367)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.1999.816184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了椭圆-双曲型Davey-Stewartson方程,该方程被认为是二维空间中非线性的包含未知函数导数的非局部非线性薛定谔方程。我们证明了对于任意t/spl ne/0关于x的解是解析的,如果数据很小,并且当|x|/spl rarr//spl infin/时呈指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytic smoothing effect and global existence for elliptic hyperbolic Davey-Stewartson system
We study the elliptic-hyperbolic Davey-Stewartson equation which is considered as a nonlocal nonlinear Schrodinger equation with nonlinearities involving derivatives of unknown function in two space dimensions. We show that solutions become analytic for any t/spl ne/0 with respect to x if the data are small and decay exponentially when |x|/spl rarr//spl infin/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信