通信谓词:处理瞬态和动态故障的高级抽象

Martin Hutle, A. Schiper
{"title":"通信谓词:处理瞬态和动态故障的高级抽象","authors":"Martin Hutle, A. Schiper","doi":"10.1109/DSN.2007.25","DOIUrl":null,"url":null,"abstract":"Consensus is one of the key problems in fault tolerant distributed computing. A very popular model for solving consensus is the failure detector model defined by Chandra and Toueg. However, the failure detector model has limitations. The paper points out these limitations, and suggests instead a model based on communication predicates, called HO model. The advantage of the HO model over failure detectors is shown, and the implementation of the HO model is discussed in the context of a system that alternates between good periods and bad periods. Two definitions of a good period are considered. For both definitions, the HO model allows us to compute the duration of a good period for solving consensus. Specifically, the model allows us to quantify the difference between the required length of an initial good period and the length of a non initial good period.","PeriodicalId":405751,"journal":{"name":"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Communication Predicates: A High-Level Abstraction for Coping with Transient and Dynamic Faults\",\"authors\":\"Martin Hutle, A. Schiper\",\"doi\":\"10.1109/DSN.2007.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consensus is one of the key problems in fault tolerant distributed computing. A very popular model for solving consensus is the failure detector model defined by Chandra and Toueg. However, the failure detector model has limitations. The paper points out these limitations, and suggests instead a model based on communication predicates, called HO model. The advantage of the HO model over failure detectors is shown, and the implementation of the HO model is discussed in the context of a system that alternates between good periods and bad periods. Two definitions of a good period are considered. For both definitions, the HO model allows us to compute the duration of a good period for solving consensus. Specifically, the model allows us to quantify the difference between the required length of an initial good period and the length of a non initial good period.\",\"PeriodicalId\":405751,\"journal\":{\"name\":\"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2007.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2007.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

一致性是容错分布式计算中的关键问题之一。一个非常流行的解决共识的模型是由Chandra和Toueg定义的故障检测器模型。然而,故障检测器模型有其局限性。本文指出了这些局限性,并提出了一种基于通信谓词的模型,称为HO模型。本文展示了HO模型相对于故障检测器的优势,并讨论了在好周期和坏周期交替的系统背景下HO模型的实现。考虑了好时期的两种定义。对于这两个定义,HO模型允许我们计算解决共识的好时期的持续时间。具体来说,该模型允许我们量化初始良好期和非初始良好期所需长度之间的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Communication Predicates: A High-Level Abstraction for Coping with Transient and Dynamic Faults
Consensus is one of the key problems in fault tolerant distributed computing. A very popular model for solving consensus is the failure detector model defined by Chandra and Toueg. However, the failure detector model has limitations. The paper points out these limitations, and suggests instead a model based on communication predicates, called HO model. The advantage of the HO model over failure detectors is shown, and the implementation of the HO model is discussed in the context of a system that alternates between good periods and bad periods. Two definitions of a good period are considered. For both definitions, the HO model allows us to compute the duration of a good period for solving consensus. Specifically, the model allows us to quantify the difference between the required length of an initial good period and the length of a non initial good period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信