暴雪挑战赛2020的NUS-HLT系统

Yi Zhou, Xiaohai Tian, Xuehao Zhou, Mingyang Zhang, Grandee Lee, Rui Liu, Berrak, Sisman, Haizhou Li
{"title":"暴雪挑战赛2020的NUS-HLT系统","authors":"Yi Zhou, Xiaohai Tian, Xuehao Zhou, Mingyang Zhang, Grandee Lee, Rui Liu, Berrak, Sisman, Haizhou Li","doi":"10.21437/vcc_bc.2020-7","DOIUrl":null,"url":null,"abstract":"The paper presents the NUS-HLT text-to-speech (TTS) system for the Blizzard Challenge 2020. The challenge has two tasks: Hub task 2020-MH1 to synthesize Mandarin Chinese given 9.5 hours of speech data from a male native speaker of Mandarin; Spoke task 2020-SS1 to synthesize Shanghainese given 3 hours of speech data from a female native speaker of Shanghainese. Our submitted system combines the word embedding, which is extracted from a pre-trained language model, with the E2E TTS synthesizer to generate acoustic features from text input. WaveRNN neural vocoder and WaveNet neural vocoder are utilized to generate speech waveforms from acoustic features in MH1 and SS1 tasks, respectively. Evaluation results provided by the challenge organizers demonstrate the effectiveness of our submitted TTS system.","PeriodicalId":355114,"journal":{"name":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUS-HLT System for Blizzard Challenge 2020\",\"authors\":\"Yi Zhou, Xiaohai Tian, Xuehao Zhou, Mingyang Zhang, Grandee Lee, Rui Liu, Berrak, Sisman, Haizhou Li\",\"doi\":\"10.21437/vcc_bc.2020-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the NUS-HLT text-to-speech (TTS) system for the Blizzard Challenge 2020. The challenge has two tasks: Hub task 2020-MH1 to synthesize Mandarin Chinese given 9.5 hours of speech data from a male native speaker of Mandarin; Spoke task 2020-SS1 to synthesize Shanghainese given 3 hours of speech data from a female native speaker of Shanghainese. Our submitted system combines the word embedding, which is extracted from a pre-trained language model, with the E2E TTS synthesizer to generate acoustic features from text input. WaveRNN neural vocoder and WaveNet neural vocoder are utilized to generate speech waveforms from acoustic features in MH1 and SS1 tasks, respectively. Evaluation results provided by the challenge organizers demonstrate the effectiveness of our submitted TTS system.\",\"PeriodicalId\":355114,\"journal\":{\"name\":\"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/vcc_bc.2020-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/vcc_bc.2020-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用于暴雪挑战赛2020的NUS-HLT文本到语音(TTS)系统。该挑战有两个任务:Hub任务2020-MH1,在给定9.5小时的普通话母语男性语音数据的情况下合成普通话;口语任务2020-SS1在给定一名母语为上海话的女性3小时语音数据的情况下,合成上海话。我们提交的系统将从预训练的语言模型中提取的词嵌入与E2E TTS合成器相结合,从文本输入中生成声学特征。在MH1和SS1任务中,分别利用WaveRNN神经声码器和WaveNet神经声码器从声学特征生成语音波形。挑战赛组织者提供的评估结果证明了我们提交的TTS系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUS-HLT System for Blizzard Challenge 2020
The paper presents the NUS-HLT text-to-speech (TTS) system for the Blizzard Challenge 2020. The challenge has two tasks: Hub task 2020-MH1 to synthesize Mandarin Chinese given 9.5 hours of speech data from a male native speaker of Mandarin; Spoke task 2020-SS1 to synthesize Shanghainese given 3 hours of speech data from a female native speaker of Shanghainese. Our submitted system combines the word embedding, which is extracted from a pre-trained language model, with the E2E TTS synthesizer to generate acoustic features from text input. WaveRNN neural vocoder and WaveNet neural vocoder are utilized to generate speech waveforms from acoustic features in MH1 and SS1 tasks, respectively. Evaluation results provided by the challenge organizers demonstrate the effectiveness of our submitted TTS system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信