多说话者语音识别的层次变分环路信念传播

Steven J. Rennie, J. Hershey, P. Olsen
{"title":"多说话者语音识别的层次变分环路信念传播","authors":"Steven J. Rennie, J. Hershey, P. Olsen","doi":"10.1109/ASRU.2009.5373446","DOIUrl":null,"url":null,"abstract":"We present a new method for multi-talker speech recognition using a single-channel that combines loopy belief propagation and variational inference methods to control the complexity of inference. The method models each source using an HMM with a hierarchical set of acoustic states, and uses the max model to approximate how the sources interact to generate mixed data. Inference involves inferring a set of probabilistic time-frequency masks to separate the speakers. By conditioning these masks on the hierarchical acoustic states of the speakers, the fidelity and complexity of acoustic inference can be precisely controlled. Acoustic inference using the algorithm scales linearly with the number of probabilistic time-frequency masks, and temporal inference scales linearly with LM size. Results on the monaural speech separation task (SSC) data demonstrate that the presented Hierarchical Variational Max-Sum Product Algorithm (HVMSP) outperforms VMSP by over 2% absolute using 4 times fewer probablistic masks. HVMSP furthermore performs on-par with the MSP algorithm, which utilizes exact conditional marginal likelihoods, using 256 times less time-frequency masks.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hierarchical variational loopy belief propagation for multi-talker speech recognition\",\"authors\":\"Steven J. Rennie, J. Hershey, P. Olsen\",\"doi\":\"10.1109/ASRU.2009.5373446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new method for multi-talker speech recognition using a single-channel that combines loopy belief propagation and variational inference methods to control the complexity of inference. The method models each source using an HMM with a hierarchical set of acoustic states, and uses the max model to approximate how the sources interact to generate mixed data. Inference involves inferring a set of probabilistic time-frequency masks to separate the speakers. By conditioning these masks on the hierarchical acoustic states of the speakers, the fidelity and complexity of acoustic inference can be precisely controlled. Acoustic inference using the algorithm scales linearly with the number of probabilistic time-frequency masks, and temporal inference scales linearly with LM size. Results on the monaural speech separation task (SSC) data demonstrate that the presented Hierarchical Variational Max-Sum Product Algorithm (HVMSP) outperforms VMSP by over 2% absolute using 4 times fewer probablistic masks. HVMSP furthermore performs on-par with the MSP algorithm, which utilizes exact conditional marginal likelihoods, using 256 times less time-frequency masks.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2009.5373446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2009.5373446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种基于单通道的多话音识别新方法,该方法结合了循环信念传播和变分推理方法来控制推理的复杂性。该方法使用具有声学状态分层集的HMM对每个源进行建模,并使用max模型来近似源如何相互作用以生成混合数据。推理包括推断一组概率时频掩模来分离说话者。通过调节这些掩模对扬声器的分层声学状态,可以精确控制声学推理的保真度和复杂性。使用该算法的声学推理与概率时频掩模的数量呈线性关系,而时间推理与LM的大小呈线性关系。在单耳语音分离任务(SSC)数据上的结果表明,所提出的分层变分最大和积算法(HVMSP)在使用4倍的概率掩码的情况下,比VMSP的绝对性能高出2%以上。此外,HVMSP算法的性能与MSP算法相当,MSP算法利用精确的条件边际似然,使用的时频掩码减少了256倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical variational loopy belief propagation for multi-talker speech recognition
We present a new method for multi-talker speech recognition using a single-channel that combines loopy belief propagation and variational inference methods to control the complexity of inference. The method models each source using an HMM with a hierarchical set of acoustic states, and uses the max model to approximate how the sources interact to generate mixed data. Inference involves inferring a set of probabilistic time-frequency masks to separate the speakers. By conditioning these masks on the hierarchical acoustic states of the speakers, the fidelity and complexity of acoustic inference can be precisely controlled. Acoustic inference using the algorithm scales linearly with the number of probabilistic time-frequency masks, and temporal inference scales linearly with LM size. Results on the monaural speech separation task (SSC) data demonstrate that the presented Hierarchical Variational Max-Sum Product Algorithm (HVMSP) outperforms VMSP by over 2% absolute using 4 times fewer probablistic masks. HVMSP furthermore performs on-par with the MSP algorithm, which utilizes exact conditional marginal likelihoods, using 256 times less time-frequency masks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信