基于加权自适应无气味卡尔曼滤波的液压系统估计

Reza Mohammadi Asl, and Heikki Handroos
{"title":"基于加权自适应无气味卡尔曼滤波的液压系统估计","authors":"Reza Mohammadi Asl, and Heikki Handroos","doi":"10.1109/GFPS.2018.8472373","DOIUrl":null,"url":null,"abstract":"In this paper, a new weighted adaptive unscented Kalman filter is introduced. The proposed filter is trying to improve the performance of the previous versions. To have better results, it uses the previous estimation parameters to update itself. The proposed Kalman filter is applied to estimate the states of the nonlinear systems under time varying noise with time varying statistics. A hydraulic system, as a nonlinear system, is used as an application for the simulation. The results of the simulation are given.","PeriodicalId":273799,"journal":{"name":"2018 Global Fluid Power Society PhD Symposium (GFPS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"New Weighted Adaptive Unscented Kalman Filter for Estimation of Hydraulic Systems\",\"authors\":\"Reza Mohammadi Asl, and Heikki Handroos\",\"doi\":\"10.1109/GFPS.2018.8472373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new weighted adaptive unscented Kalman filter is introduced. The proposed filter is trying to improve the performance of the previous versions. To have better results, it uses the previous estimation parameters to update itself. The proposed Kalman filter is applied to estimate the states of the nonlinear systems under time varying noise with time varying statistics. A hydraulic system, as a nonlinear system, is used as an application for the simulation. The results of the simulation are given.\",\"PeriodicalId\":273799,\"journal\":{\"name\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Global Fluid Power Society PhD Symposium (GFPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GFPS.2018.8472373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Global Fluid Power Society PhD Symposium (GFPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GFPS.2018.8472373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种新的加权自适应无气味卡尔曼滤波器。建议的过滤器试图改进以前版本的性能。为了获得更好的结果,它使用先前的估计参数来更新自己。将所提出的卡尔曼滤波应用于时变噪声下非线性系统的状态估计。液压系统作为一个非线性系统,作为仿真的应用。最后给出了仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Weighted Adaptive Unscented Kalman Filter for Estimation of Hydraulic Systems
In this paper, a new weighted adaptive unscented Kalman filter is introduced. The proposed filter is trying to improve the performance of the previous versions. To have better results, it uses the previous estimation parameters to update itself. The proposed Kalman filter is applied to estimate the states of the nonlinear systems under time varying noise with time varying statistics. A hydraulic system, as a nonlinear system, is used as an application for the simulation. The results of the simulation are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信