{"title":"基于广义高斯混合建模的鲁棒视频前景分割","authors":"M. S. Allili, N. Bouguila, D. Ziou","doi":"10.1109/CRV.2007.7","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust video foreground modeling by using a finite mixture model of generalized Gaussian distributions (GDD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GDDS and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.","PeriodicalId":304254,"journal":{"name":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"A Robust Video Foreground Segmentation by Using Generalized Gaussian Mixture Modeling\",\"authors\":\"M. S. Allili, N. Bouguila, D. Ziou\",\"doi\":\"10.1109/CRV.2007.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust video foreground modeling by using a finite mixture model of generalized Gaussian distributions (GDD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GDDS and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.\",\"PeriodicalId\":304254,\"journal\":{\"name\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2007.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth Canadian Conference on Computer and Robot Vision (CRV '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2007.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Robust Video Foreground Segmentation by Using Generalized Gaussian Mixture Modeling
In this paper, we propose a robust video foreground modeling by using a finite mixture model of generalized Gaussian distributions (GDD). The model has a flexibility to model the video background in the presence of sudden illumination changes and shadows, allowing for an efficient foreground segmentation. In a first part of the present work, we propose a derivation of the online estimation of the parameters of the mixture of GDDS and we propose a Bayesian approach for the selection of the number of classes. In a second part, we show experiments of video foreground segmentation demonstrating the performance of the proposed model.