基于社区的社会标签主题建模

Daifeng Li, Bing He, Ying Ding, Jie Tang, Cassidy R. Sugimoto, Zheng Qin, E. Yan, Juan-Zi Li, Tianxi Dong
{"title":"基于社区的社会标签主题建模","authors":"Daifeng Li, Bing He, Ying Ding, Jie Tang, Cassidy R. Sugimoto, Zheng Qin, E. Yan, Juan-Zi Li, Tianxi Dong","doi":"10.1145/1871437.1871673","DOIUrl":null,"url":null,"abstract":"Exploring community is fundamental for uncovering the connections between structure and function of complex networks and for practical applications in many disciplines such as biology and sociology. In this paper, we propose a TTR-LDA-Community model which combines the Latent Dirichlet Allocation model (LDA) and the Girvan-Newman community detection algorithm with an inference mechanism. The model is then applied to data from Delicious, a popular social tagging system, over the time period of 2005-2008. Our results show that 1) users in the same community tend to be interested in similar set of topics in all time periods; and 2) topics may divide into several sub-topics and scatter into different communities over time. We evaluate the effectiveness of our model and show that the TTR-LDA-Community model is meaningful for understanding communities and outperforms TTR-LDA and LDA models in tag prediction.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Community-based topic modeling for social tagging\",\"authors\":\"Daifeng Li, Bing He, Ying Ding, Jie Tang, Cassidy R. Sugimoto, Zheng Qin, E. Yan, Juan-Zi Li, Tianxi Dong\",\"doi\":\"10.1145/1871437.1871673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring community is fundamental for uncovering the connections between structure and function of complex networks and for practical applications in many disciplines such as biology and sociology. In this paper, we propose a TTR-LDA-Community model which combines the Latent Dirichlet Allocation model (LDA) and the Girvan-Newman community detection algorithm with an inference mechanism. The model is then applied to data from Delicious, a popular social tagging system, over the time period of 2005-2008. Our results show that 1) users in the same community tend to be interested in similar set of topics in all time periods; and 2) topics may divide into several sub-topics and scatter into different communities over time. We evaluate the effectiveness of our model and show that the TTR-LDA-Community model is meaningful for understanding communities and outperforms TTR-LDA and LDA models in tag prediction.\",\"PeriodicalId\":310611,\"journal\":{\"name\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1871437.1871673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

探索群落是揭示复杂网络结构与功能之间联系的基础,也是生物学、社会学等许多学科实际应用的基础。本文提出了一种结合潜在狄利克雷分配模型(Latent Dirichlet Allocation model, LDA)和Girvan-Newman社团检测算法的ttr -LDA社团模型,该模型具有推理机制。然后将该模型应用于流行的社交标签系统Delicious 2005-2008年间的数据。我们的研究结果表明:1)同一社区的用户在所有时间段都倾向于对相似的主题感兴趣;2)随着时间的推移,话题可能会分成几个子话题,并分散到不同的社区。我们评估了我们的模型的有效性,并表明TTR-LDA- community模型对于理解社区有意义,并且在标签预测方面优于TTR-LDA和LDA模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Community-based topic modeling for social tagging
Exploring community is fundamental for uncovering the connections between structure and function of complex networks and for practical applications in many disciplines such as biology and sociology. In this paper, we propose a TTR-LDA-Community model which combines the Latent Dirichlet Allocation model (LDA) and the Girvan-Newman community detection algorithm with an inference mechanism. The model is then applied to data from Delicious, a popular social tagging system, over the time period of 2005-2008. Our results show that 1) users in the same community tend to be interested in similar set of topics in all time periods; and 2) topics may divide into several sub-topics and scatter into different communities over time. We evaluate the effectiveness of our model and show that the TTR-LDA-Community model is meaningful for understanding communities and outperforms TTR-LDA and LDA models in tag prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信