基于改进KNN-DAGSVM融合算法的外骨骼机器人步态识别

Hao Xing, Rui Zhang
{"title":"基于改进KNN-DAGSVM融合算法的外骨骼机器人步态识别","authors":"Hao Xing, Rui Zhang","doi":"10.1109/YAC57282.2022.10023588","DOIUrl":null,"url":null,"abstract":"Currently exoskeleton robots have a wide range of applications in medical bionics, and care projects for the elderly and disabled. The recognition accuracy of human gait and the real-time performance of the system remain to be improved with urgent need. The conventional KNN method and the DAGSVM algorithm for gait detection are used in this research to divide a whole gait cycle of a human walking on level ground into five stages. It proposes a joint fusion algorithm (im-proved KNN-DAGSVM algorithm) on the basis of KNN algorithm and DAGSVM algorithm. The results reveal that the im-proved KNN-DAGSVM algorithm can successfully improve the recognition rate while shortening identification time.","PeriodicalId":272227,"journal":{"name":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gait recognition for exoskeleton robots based on improved KNN-DAGSVM fusion algorithm\",\"authors\":\"Hao Xing, Rui Zhang\",\"doi\":\"10.1109/YAC57282.2022.10023588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently exoskeleton robots have a wide range of applications in medical bionics, and care projects for the elderly and disabled. The recognition accuracy of human gait and the real-time performance of the system remain to be improved with urgent need. The conventional KNN method and the DAGSVM algorithm for gait detection are used in this research to divide a whole gait cycle of a human walking on level ground into five stages. It proposes a joint fusion algorithm (im-proved KNN-DAGSVM algorithm) on the basis of KNN algorithm and DAGSVM algorithm. The results reveal that the im-proved KNN-DAGSVM algorithm can successfully improve the recognition rate while shortening identification time.\",\"PeriodicalId\":272227,\"journal\":{\"name\":\"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YAC57282.2022.10023588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YAC57282.2022.10023588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前外骨骼机器人在医学仿生学、老年人和残疾人护理项目中有着广泛的应用。该系统对人体步态的识别精度和实时性还有待进一步提高。本研究采用传统的KNN方法和DAGSVM算法进行步态检测,将人在平地上行走的整个步态周期划分为5个阶段。在KNN算法和DAGSVM算法的基础上,提出了一种联合融合算法(改进的KNN-DAGSVM算法)。结果表明,改进的KNN-DAGSVM算法在缩短识别时间的同时,成功地提高了识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gait recognition for exoskeleton robots based on improved KNN-DAGSVM fusion algorithm
Currently exoskeleton robots have a wide range of applications in medical bionics, and care projects for the elderly and disabled. The recognition accuracy of human gait and the real-time performance of the system remain to be improved with urgent need. The conventional KNN method and the DAGSVM algorithm for gait detection are used in this research to divide a whole gait cycle of a human walking on level ground into five stages. It proposes a joint fusion algorithm (im-proved KNN-DAGSVM algorithm) on the basis of KNN algorithm and DAGSVM algorithm. The results reveal that the im-proved KNN-DAGSVM algorithm can successfully improve the recognition rate while shortening identification time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信