基于模型的滑动导向移动机器人模糊增益调度EKF

B. Kadmiry
{"title":"基于模型的滑动导向移动机器人模糊增益调度EKF","authors":"B. Kadmiry","doi":"10.1109/ICARA.2015.7081134","DOIUrl":null,"url":null,"abstract":"This article describes an approach to autonomous robotic for agricultural applications. Technological setup aims at stable navigation based on estimation through Extended Kalman filtering (EKF), to enforce robust Skid-Steered Mobile Robot (SSMR) navigation. The scientific contribution is the implementation of two model-based estimators, using EKF algorithms, one on a nonlinear model, and one on a piece-wise linearized robot model. The later is a Fuzzy Gain Scheduled (FGS)-based development. The process is taking into account tire-road modelling of friction forces in order to improve model performance. State estimation and correction using sensor data fusion (Odometry-IMU-GPS) is considered, to improve the SSMR control in critical motions, reducing inherent drifts due to skid-steer properties; for the purpose of better regulation and tracking control designs. Whilst the experimental results demonstrated the usefulness of FGS approach for optimal EKF estimation, further modelling and live testing are required to determine robot ability to cope with different scenarios in naturally varying environment.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fuzzy gain scheduled EKF for model-based Skid-Steered Mobile Robot\",\"authors\":\"B. Kadmiry\",\"doi\":\"10.1109/ICARA.2015.7081134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes an approach to autonomous robotic for agricultural applications. Technological setup aims at stable navigation based on estimation through Extended Kalman filtering (EKF), to enforce robust Skid-Steered Mobile Robot (SSMR) navigation. The scientific contribution is the implementation of two model-based estimators, using EKF algorithms, one on a nonlinear model, and one on a piece-wise linearized robot model. The later is a Fuzzy Gain Scheduled (FGS)-based development. The process is taking into account tire-road modelling of friction forces in order to improve model performance. State estimation and correction using sensor data fusion (Odometry-IMU-GPS) is considered, to improve the SSMR control in critical motions, reducing inherent drifts due to skid-steer properties; for the purpose of better regulation and tracking control designs. Whilst the experimental results demonstrated the usefulness of FGS approach for optimal EKF estimation, further modelling and live testing are required to determine robot ability to cope with different scenarios in naturally varying environment.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一种用于农业应用的自主机器人的方法。基于扩展卡尔曼滤波(EKF)估计的稳定导航技术,实现稳健滑向移动机器人(SSMR)导航。科学贡献是使用EKF算法实现了两个基于模型的估计器,一个用于非线性模型,另一个用于分段线性化机器人模型。后者是基于模糊增益计划(FGS)的开发。该过程考虑了轮胎-道路的摩擦力模型,以提高模型的性能。考虑使用传感器数据融合(Odometry-IMU-GPS)进行状态估计和校正,以改善临界运动中的SSMR控制,减少由于滑转向特性引起的固有漂移;为了更好的调节和跟踪控制设计。虽然实验结果证明了FGS方法对最佳EKF估计的有效性,但需要进一步的建模和现场测试来确定机器人在自然变化的环境中应对不同场景的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy gain scheduled EKF for model-based Skid-Steered Mobile Robot
This article describes an approach to autonomous robotic for agricultural applications. Technological setup aims at stable navigation based on estimation through Extended Kalman filtering (EKF), to enforce robust Skid-Steered Mobile Robot (SSMR) navigation. The scientific contribution is the implementation of two model-based estimators, using EKF algorithms, one on a nonlinear model, and one on a piece-wise linearized robot model. The later is a Fuzzy Gain Scheduled (FGS)-based development. The process is taking into account tire-road modelling of friction forces in order to improve model performance. State estimation and correction using sensor data fusion (Odometry-IMU-GPS) is considered, to improve the SSMR control in critical motions, reducing inherent drifts due to skid-steer properties; for the purpose of better regulation and tracking control designs. Whilst the experimental results demonstrated the usefulness of FGS approach for optimal EKF estimation, further modelling and live testing are required to determine robot ability to cope with different scenarios in naturally varying environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信