(3 + 1)维时间分数阶KZK方程新的精确解析解及数值模拟

Lan-fang Zhang, Juanjuan Ji, Julang Jiang, Chaolong Zhang
{"title":"(3 + 1)维时间分数阶KZK方程新的精确解析解及数值模拟","authors":"Lan-fang Zhang, Juanjuan Ji, Julang Jiang, Chaolong Zhang","doi":"10.1504/IJCSM.2019.10019871","DOIUrl":null,"url":null,"abstract":"The KZK parabolic nonlinear wave equation is one of the most widely employed nonlinear models for propagation of 3D diffraction sound beams in dissipative media. In this paper, the exact analytical solutions of (3 + 1)-dimensional time fractional KZK equation have been constructed in the sense of modified Riemann-Liouville derivative and the (G′/G)-expansion method, the simplest equation and the fractional complex transform. As a result, some new exact analytical solutions are obtained, and the effects of diffraction, attenuation and nonlinearity are researched deeply using the obtained exact analytical solutions.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The new exact analytical solutions and numerical simulation of (3 + 1)-dimensional time fractional KZK equation\",\"authors\":\"Lan-fang Zhang, Juanjuan Ji, Julang Jiang, Chaolong Zhang\",\"doi\":\"10.1504/IJCSM.2019.10019871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The KZK parabolic nonlinear wave equation is one of the most widely employed nonlinear models for propagation of 3D diffraction sound beams in dissipative media. In this paper, the exact analytical solutions of (3 + 1)-dimensional time fractional KZK equation have been constructed in the sense of modified Riemann-Liouville derivative and the (G′/G)-expansion method, the simplest equation and the fractional complex transform. As a result, some new exact analytical solutions are obtained, and the effects of diffraction, attenuation and nonlinearity are researched deeply using the obtained exact analytical solutions.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2019.10019871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2019.10019871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

KZK抛物型非线性波动方程是三维衍射声束在耗散介质中传播最广泛的非线性模型之一。本文利用修正Riemann-Liouville导数和(G’/G)-展开法、最简方程和分数阶复变换,构造了(3 + 1)维时间分数阶KZK方程的精确解析解。得到了一些新的精确解析解,并利用得到的精确解析解深入研究了衍射、衰减和非线性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The new exact analytical solutions and numerical simulation of (3 + 1)-dimensional time fractional KZK equation
The KZK parabolic nonlinear wave equation is one of the most widely employed nonlinear models for propagation of 3D diffraction sound beams in dissipative media. In this paper, the exact analytical solutions of (3 + 1)-dimensional time fractional KZK equation have been constructed in the sense of modified Riemann-Liouville derivative and the (G′/G)-expansion method, the simplest equation and the fractional complex transform. As a result, some new exact analytical solutions are obtained, and the effects of diffraction, attenuation and nonlinearity are researched deeply using the obtained exact analytical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信