{"title":"节能球解码的架构","authors":"Ravi Jenkal, W. R. Davis","doi":"10.1145/1283780.1283833","DOIUrl":null,"url":null,"abstract":"Sphere decoding has become a popular implementation of MIMO detection due to its improved performance at lower hardware complexity. ASIC implementations have proven the feasibility of this method but fail to effectively address the issue of power efficiency. In this work, we propose an improved architecture that aims to exploit a combination of a deeper pipeline and the use of single-port read and write memories to increase the energy efficiency (bits/sec/mW) of the implementation. We see a 30% and 80% increase in memory and logic energy efficiencies when compared to an unpipelined version of the implementation in 0.18 mu technology.","PeriodicalId":345714,"journal":{"name":"2006 IEEE International SOC Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Architecture for Energy Efficient Sphere Decoding\",\"authors\":\"Ravi Jenkal, W. R. Davis\",\"doi\":\"10.1145/1283780.1283833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sphere decoding has become a popular implementation of MIMO detection due to its improved performance at lower hardware complexity. ASIC implementations have proven the feasibility of this method but fail to effectively address the issue of power efficiency. In this work, we propose an improved architecture that aims to exploit a combination of a deeper pipeline and the use of single-port read and write memories to increase the energy efficiency (bits/sec/mW) of the implementation. We see a 30% and 80% increase in memory and logic energy efficiencies when compared to an unpipelined version of the implementation in 0.18 mu technology.\",\"PeriodicalId\":345714,\"journal\":{\"name\":\"2006 IEEE International SOC Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International SOC Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1283780.1283833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International SOC Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1283780.1283833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sphere decoding has become a popular implementation of MIMO detection due to its improved performance at lower hardware complexity. ASIC implementations have proven the feasibility of this method but fail to effectively address the issue of power efficiency. In this work, we propose an improved architecture that aims to exploit a combination of a deeper pipeline and the use of single-port read and write memories to increase the energy efficiency (bits/sec/mW) of the implementation. We see a 30% and 80% increase in memory and logic energy efficiencies when compared to an unpipelined version of the implementation in 0.18 mu technology.