基于多模态RNN的文本图像提取摘要

Jingqiang Chen, H. Zhuge
{"title":"基于多模态RNN的文本图像提取摘要","authors":"Jingqiang Chen, H. Zhuge","doi":"10.1109/SKG.2018.00033","DOIUrl":null,"url":null,"abstract":"Rapid growth of multi-modal documents containing images on the Internet makes multi-modal summarization necessary. Recent advances in neural-based text summarization show the strength of deep learning technique in summarization. This paper proposes a neural-based extractive multi-modal summarization method based on multi-modal RNN. Our method first encodes documents and images with a multi-modal RNN, and then calculates the summary probability of sentences through a logistic classifier using text coverage, text redundancy, and image set coverage as features. We extend the DailyMail corpora by collecting images from the Web. Experiments show our method outperforms the state-of-the-art neural summarization methods.","PeriodicalId":265760,"journal":{"name":"2018 14th International Conference on Semantics, Knowledge and Grids (SKG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Extractive Text-Image Summarization Using Multi-Modal RNN\",\"authors\":\"Jingqiang Chen, H. Zhuge\",\"doi\":\"10.1109/SKG.2018.00033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid growth of multi-modal documents containing images on the Internet makes multi-modal summarization necessary. Recent advances in neural-based text summarization show the strength of deep learning technique in summarization. This paper proposes a neural-based extractive multi-modal summarization method based on multi-modal RNN. Our method first encodes documents and images with a multi-modal RNN, and then calculates the summary probability of sentences through a logistic classifier using text coverage, text redundancy, and image set coverage as features. We extend the DailyMail corpora by collecting images from the Web. Experiments show our method outperforms the state-of-the-art neural summarization methods.\",\"PeriodicalId\":265760,\"journal\":{\"name\":\"2018 14th International Conference on Semantics, Knowledge and Grids (SKG)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference on Semantics, Knowledge and Grids (SKG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2018.00033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference on Semantics, Knowledge and Grids (SKG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2018.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

Internet上包含图像的多模态文档的快速增长使得多模态摘要成为必要。基于神经的文本摘要的最新进展显示了深度学习技术在摘要中的优势。提出了一种基于多模态RNN的神经提取多模态摘要方法。我们的方法首先使用多模态RNN对文档和图像进行编码,然后使用文本覆盖、文本冗余和图像集覆盖作为特征,通过逻辑分类器计算句子的总结概率。我们通过从网络上收集图像来扩展每日邮报的语料库。实验表明,该方法优于当前最先进的神经摘要方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extractive Text-Image Summarization Using Multi-Modal RNN
Rapid growth of multi-modal documents containing images on the Internet makes multi-modal summarization necessary. Recent advances in neural-based text summarization show the strength of deep learning technique in summarization. This paper proposes a neural-based extractive multi-modal summarization method based on multi-modal RNN. Our method first encodes documents and images with a multi-modal RNN, and then calculates the summary probability of sentences through a logistic classifier using text coverage, text redundancy, and image set coverage as features. We extend the DailyMail corpora by collecting images from the Web. Experiments show our method outperforms the state-of-the-art neural summarization methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信