ByungKun Lee, Sunhong Jeong, Joosung Lee, Tae Shik Kim, B. Braaf, B. Vakoc, W. Oh
{"title":"使用多mhz相位稳定SS-OCT的人视网膜宽视场计算细胞分辨率成像","authors":"ByungKun Lee, Sunhong Jeong, Joosung Lee, Tae Shik Kim, B. Braaf, B. Vakoc, W. Oh","doi":"10.1117/12.2670648","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view would bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational Adaptive Optics (AO) Optical Coherence Tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields and their high cost, and their intrinsic hardware complexity limit their practical utility. Here, we demonstrate 3D depth-invariant cellular-resolution imaging of the living human retina over a 3-mm × 3-mm field of view using the intrinsically phase-stable multi-MHz retinal swept-source OCT and tailored computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.","PeriodicalId":278089,"journal":{"name":"European Conference on Biomedical Optics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wide-field computational cellular-resolution imaging of the human retina using multi-MHz phase-stable SS-OCT\",\"authors\":\"ByungKun Lee, Sunhong Jeong, Joosung Lee, Tae Shik Kim, B. Braaf, B. Vakoc, W. Oh\",\"doi\":\"10.1117/12.2670648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view would bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational Adaptive Optics (AO) Optical Coherence Tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields and their high cost, and their intrinsic hardware complexity limit their practical utility. Here, we demonstrate 3D depth-invariant cellular-resolution imaging of the living human retina over a 3-mm × 3-mm field of view using the intrinsically phase-stable multi-MHz retinal swept-source OCT and tailored computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.\",\"PeriodicalId\":278089,\"journal\":{\"name\":\"European Conference on Biomedical Optics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Biomedical Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2670648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Biomedical Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2670648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wide-field computational cellular-resolution imaging of the human retina using multi-MHz phase-stable SS-OCT
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view would bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational Adaptive Optics (AO) Optical Coherence Tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields and their high cost, and their intrinsic hardware complexity limit their practical utility. Here, we demonstrate 3D depth-invariant cellular-resolution imaging of the living human retina over a 3-mm × 3-mm field of view using the intrinsically phase-stable multi-MHz retinal swept-source OCT and tailored computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.