{"title":"生物学中的密度泛函理论","authors":"Preet Sharma","doi":"10.31031/acsr.2020.02.000530","DOIUrl":null,"url":null,"abstract":"Density functional theory was created to calculate and analyze the electronic structure of quantum and solid-state structures that are of interest in solid state physics and chemistry [1]. It is a hybrid of quantum mechanics and molecular mechanics. It utilizes quantum mechanics to describe regions of high priorities in a system. This method is usually very accurate when the right parameters are used. Additionally, DFT uses molecular mechanics force fields to describe the remaining atoms in the system [2]. This method does not need to be as accurate since it is not used on the region of focus. The improvements made to DFT during the late twentieth century have expanded its application across the disciplines of chemistry and physics. Most recently, these calculations have been used to describe biological molecules. However, even the simplest biological molecules tend to be large compared to those studied in physical science. Therefore, the computational cost would be exuberant if other Ab inito methods were used. DFT can be applied to these large systems because it offers a good balance between accuracy and computational cost.","PeriodicalId":175500,"journal":{"name":"Annals of Chemical Science Research","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density Functional Theory in Biology\",\"authors\":\"Preet Sharma\",\"doi\":\"10.31031/acsr.2020.02.000530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Density functional theory was created to calculate and analyze the electronic structure of quantum and solid-state structures that are of interest in solid state physics and chemistry [1]. It is a hybrid of quantum mechanics and molecular mechanics. It utilizes quantum mechanics to describe regions of high priorities in a system. This method is usually very accurate when the right parameters are used. Additionally, DFT uses molecular mechanics force fields to describe the remaining atoms in the system [2]. This method does not need to be as accurate since it is not used on the region of focus. The improvements made to DFT during the late twentieth century have expanded its application across the disciplines of chemistry and physics. Most recently, these calculations have been used to describe biological molecules. However, even the simplest biological molecules tend to be large compared to those studied in physical science. Therefore, the computational cost would be exuberant if other Ab inito methods were used. DFT can be applied to these large systems because it offers a good balance between accuracy and computational cost.\",\"PeriodicalId\":175500,\"journal\":{\"name\":\"Annals of Chemical Science Research\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Chemical Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31031/acsr.2020.02.000530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Chemical Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/acsr.2020.02.000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Density functional theory was created to calculate and analyze the electronic structure of quantum and solid-state structures that are of interest in solid state physics and chemistry [1]. It is a hybrid of quantum mechanics and molecular mechanics. It utilizes quantum mechanics to describe regions of high priorities in a system. This method is usually very accurate when the right parameters are used. Additionally, DFT uses molecular mechanics force fields to describe the remaining atoms in the system [2]. This method does not need to be as accurate since it is not used on the region of focus. The improvements made to DFT during the late twentieth century have expanded its application across the disciplines of chemistry and physics. Most recently, these calculations have been used to describe biological molecules. However, even the simplest biological molecules tend to be large compared to those studied in physical science. Therefore, the computational cost would be exuberant if other Ab inito methods were used. DFT can be applied to these large systems because it offers a good balance between accuracy and computational cost.