阿拉伯语自然情感视听数据集

Ftoon Abu Shaqra, R. Duwairi, M. Al-Ayyoub
{"title":"阿拉伯语自然情感视听数据集","authors":"Ftoon Abu Shaqra, R. Duwairi, M. Al-Ayyoub","doi":"10.1109/FiCloud.2019.00054","DOIUrl":null,"url":null,"abstract":"Emotions are a crucial aspect of human life and the researchers have tried to build an automatic emotion recognition system that helps to provide important real-world applications. The psychologists have shown that emotions differ across culture, considering this fact, we provide and describe the first audio-visual Arabic emotional dataset which called (AVANEmo). In this work we aim to fill the gap between studies of emotion recognition for Arabic content and other languages by provided an Arabic dataset which is a major and fundamental part of build emotion recognition application. Our dataset contains 3000 clips for video and audio data, and it covers six basic emotional labels (Happy, Sad, Angry, Surprise, Disgust, Neutral). Also, we provide some baseline experiments to measure the primitive performance for automated audio and visual emotion recognition application using the AVANEmo dataset. The best accuracy that we achieved was 54.5% and 57.9% using the audio and visual data respectively. The data will be available for distribution to researchers.","PeriodicalId":268882,"journal":{"name":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Audio-Visual Arabic Dataset for Natural Emotions\",\"authors\":\"Ftoon Abu Shaqra, R. Duwairi, M. Al-Ayyoub\",\"doi\":\"10.1109/FiCloud.2019.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions are a crucial aspect of human life and the researchers have tried to build an automatic emotion recognition system that helps to provide important real-world applications. The psychologists have shown that emotions differ across culture, considering this fact, we provide and describe the first audio-visual Arabic emotional dataset which called (AVANEmo). In this work we aim to fill the gap between studies of emotion recognition for Arabic content and other languages by provided an Arabic dataset which is a major and fundamental part of build emotion recognition application. Our dataset contains 3000 clips for video and audio data, and it covers six basic emotional labels (Happy, Sad, Angry, Surprise, Disgust, Neutral). Also, we provide some baseline experiments to measure the primitive performance for automated audio and visual emotion recognition application using the AVANEmo dataset. The best accuracy that we achieved was 54.5% and 57.9% using the audio and visual data respectively. The data will be available for distribution to researchers.\",\"PeriodicalId\":268882,\"journal\":{\"name\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FiCloud.2019.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

情绪是人类生活的一个重要方面,研究人员试图建立一个自动情绪识别系统,帮助提供重要的现实世界应用。心理学家已经证明,不同文化背景下的情感是不同的。考虑到这一事实,我们提供并描述了第一个视听阿拉伯语情感数据集,名为 (AVANEmo)。在这项工作中,我们旨在通过提供一个阿拉伯语数据集,填补阿拉伯语内容与其他语言情感识别研究之间的空白,该数据集是构建情感识别应用的重要基础部分。我们的数据集包含 3000 个视频和音频数据片段,涵盖六种基本情感标签(快乐、悲伤、愤怒、惊讶、厌恶、中性)。此外,我们还提供了一些基线实验,利用 AVANEmo 数据集测量自动视听情感识别应用的原始性能。我们使用音频和视觉数据取得的最佳准确率分别为 54.5% 和 57.9%。这些数据将提供给研究人员使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Audio-Visual Arabic Dataset for Natural Emotions
Emotions are a crucial aspect of human life and the researchers have tried to build an automatic emotion recognition system that helps to provide important real-world applications. The psychologists have shown that emotions differ across culture, considering this fact, we provide and describe the first audio-visual Arabic emotional dataset which called (AVANEmo). In this work we aim to fill the gap between studies of emotion recognition for Arabic content and other languages by provided an Arabic dataset which is a major and fundamental part of build emotion recognition application. Our dataset contains 3000 clips for video and audio data, and it covers six basic emotional labels (Happy, Sad, Angry, Surprise, Disgust, Neutral). Also, we provide some baseline experiments to measure the primitive performance for automated audio and visual emotion recognition application using the AVANEmo dataset. The best accuracy that we achieved was 54.5% and 57.9% using the audio and visual data respectively. The data will be available for distribution to researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信