ARIMA神经网络混合模型比单一模型更好吗?

T. Taşkaya-Temizel, Khurshid Ahmad
{"title":"ARIMA神经网络混合模型比单一模型更好吗?","authors":"T. Taşkaya-Temizel, Khurshid Ahmad","doi":"10.1109/IJCNN.2005.1556438","DOIUrl":null,"url":null,"abstract":"Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series: nonstationary linear component can be modeled using ARIMA and nonlinear component using neural networks. Our studies suggest that the use of a nonlinear component may degenerate the performance of such hybrids and that a simpler hybrid comprising linear AR model with a TDNN outperforms the more complex hybrid in tests on benchmark economic and financial time series.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Are ARIMA neural network hybrids better than single models?\",\"authors\":\"T. Taşkaya-Temizel, Khurshid Ahmad\",\"doi\":\"10.1109/IJCNN.2005.1556438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series: nonstationary linear component can be modeled using ARIMA and nonlinear component using neural networks. Our studies suggest that the use of a nonlinear component may degenerate the performance of such hybrids and that a simpler hybrid comprising linear AR model with a TDNN outperforms the more complex hybrid in tests on benchmark economic and financial time series.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

自回归综合移动平均(ARIMA)和神经网络模型的混合方法在文献中普遍比单一神经网络和单一ARIMA模型更受青睐。这种方法的好处似乎是实质性的,特别是在处理非平稳序列时:非平稳线性分量可以使用ARIMA建模,非线性分量可以使用神经网络建模。我们的研究表明,使用非线性分量可能会使这种混合模型的性能退化,并且在基准经济和金融时间序列的测试中,由线性AR模型和TDNN组成的更简单的混合模型优于更复杂的混合模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are ARIMA neural network hybrids better than single models?
Hybrid methods comprising autoregressive integrated moving average (ARIMA) and neural network models are generally favored against single neural network and single ARIMA models in the literature. The benefits of such methods appear to be substantial especially when dealing with non-stationary series: nonstationary linear component can be modeled using ARIMA and nonlinear component using neural networks. Our studies suggest that the use of a nonlinear component may degenerate the performance of such hybrids and that a simpler hybrid comprising linear AR model with a TDNN outperforms the more complex hybrid in tests on benchmark economic and financial time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信