递归姿态相关AAM:在驾驶员监控中的应用

L. Teijeiro-Mosquera, J. Alba-Castro
{"title":"递归姿态相关AAM:在驾驶员监控中的应用","authors":"L. Teijeiro-Mosquera, J. Alba-Castro","doi":"10.1109/IVS.2011.5940574","DOIUrl":null,"url":null,"abstract":"A general purpose driver's monitoring system should be able to robustly estimate the main rigid and elastic facial movements through time. Model-based methods have many advantages over feature-based methods for succeeding in this task. This paper presents a system for robust real-time tracking of a set of facial landmarks based on Active Appearance Models. The main differences with other AAM proposals in the literature are twofold. First, a run-time adaptation of the AAM regression matrix using a recursive algorithm to improve convergence precision, second, a multiresolution pose-dependent strategy, PD-AAM, to reduce error in landmarks location for rotated faces and to reduce also computational burden. The proposal is tested in the BUHMAP database, a public database with head and expression movements and in an own set of videos captured in a car. Tests show that the conjunction of these two strategies improve results over a classical AAM tracking system.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Recursive pose dependent AAM: Application to drivers' monitoring\",\"authors\":\"L. Teijeiro-Mosquera, J. Alba-Castro\",\"doi\":\"10.1109/IVS.2011.5940574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general purpose driver's monitoring system should be able to robustly estimate the main rigid and elastic facial movements through time. Model-based methods have many advantages over feature-based methods for succeeding in this task. This paper presents a system for robust real-time tracking of a set of facial landmarks based on Active Appearance Models. The main differences with other AAM proposals in the literature are twofold. First, a run-time adaptation of the AAM regression matrix using a recursive algorithm to improve convergence precision, second, a multiresolution pose-dependent strategy, PD-AAM, to reduce error in landmarks location for rotated faces and to reduce also computational burden. The proposal is tested in the BUHMAP database, a public database with head and expression movements and in an own set of videos captured in a car. Tests show that the conjunction of these two strategies improve results over a classical AAM tracking system.\",\"PeriodicalId\":117811,\"journal\":{\"name\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2011.5940574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

一个通用的驾驶员监测系统应该能够可靠地估计主要的刚性和弹性面部运动随时间的变化。在完成这一任务方面,基于模型的方法比基于特征的方法有许多优点。本文提出了一种基于主动外观模型的鲁棒实时面部特征跟踪系统。与文献中其他AAM建议的主要区别在于两个方面。首先,使用递归算法对AAM回归矩阵进行运行时自适应,以提高收敛精度;其次,采用多分辨率姿态相关策略PD-AAM,以减少旋转人脸的地标定位误差并减少计算负担。该提议在BUHMAP数据库(一个包含头部和表情运动的公共数据库)和一组自己在汽车中拍摄的视频中进行了测试。测试表明,这两种策略的结合比经典AAM跟踪系统的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive pose dependent AAM: Application to drivers' monitoring
A general purpose driver's monitoring system should be able to robustly estimate the main rigid and elastic facial movements through time. Model-based methods have many advantages over feature-based methods for succeeding in this task. This paper presents a system for robust real-time tracking of a set of facial landmarks based on Active Appearance Models. The main differences with other AAM proposals in the literature are twofold. First, a run-time adaptation of the AAM regression matrix using a recursive algorithm to improve convergence precision, second, a multiresolution pose-dependent strategy, PD-AAM, to reduce error in landmarks location for rotated faces and to reduce also computational burden. The proposal is tested in the BUHMAP database, a public database with head and expression movements and in an own set of videos captured in a car. Tests show that the conjunction of these two strategies improve results over a classical AAM tracking system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信