C. Wisniewski, G. F. Leal Ferreira, R. Faria, J. Giacometti
{"title":"用斜坡电压技术分析稳定和亚稳态铁电极化","authors":"C. Wisniewski, G. F. Leal Ferreira, R. Faria, J. Giacometti","doi":"10.1109/ISE.2002.1042982","DOIUrl":null,"url":null,"abstract":"The study of the stable and the metastable ferroelectric polarization of poly(vinylidene fluoride), PVDF, was performed using two successive equal sign ramp voltages, mediated by a short-circuit period. Rates from 10 V/s up to 0.7 MV/s were used. Results showed that they follow different formation kinetics; that the stable part decreases for higher ramp voltage rates and its apparent coercive field increases.","PeriodicalId":331115,"journal":{"name":"Proceedings. 11th International Symposium on Electrets","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stable and metastable ferroelectric polarization analyzed by the ramp voltage technique\",\"authors\":\"C. Wisniewski, G. F. Leal Ferreira, R. Faria, J. Giacometti\",\"doi\":\"10.1109/ISE.2002.1042982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of the stable and the metastable ferroelectric polarization of poly(vinylidene fluoride), PVDF, was performed using two successive equal sign ramp voltages, mediated by a short-circuit period. Rates from 10 V/s up to 0.7 MV/s were used. Results showed that they follow different formation kinetics; that the stable part decreases for higher ramp voltage rates and its apparent coercive field increases.\",\"PeriodicalId\":331115,\"journal\":{\"name\":\"Proceedings. 11th International Symposium on Electrets\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 11th International Symposium on Electrets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISE.2002.1042982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 11th International Symposium on Electrets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISE.2002.1042982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stable and metastable ferroelectric polarization analyzed by the ramp voltage technique
The study of the stable and the metastable ferroelectric polarization of poly(vinylidene fluoride), PVDF, was performed using two successive equal sign ramp voltages, mediated by a short-circuit period. Rates from 10 V/s up to 0.7 MV/s were used. Results showed that they follow different formation kinetics; that the stable part decreases for higher ramp voltage rates and its apparent coercive field increases.