一种减少学习时间的极值注入方法使mln具有多权重容错性

I. Takanami, Y. Oyama
{"title":"一种减少学习时间的极值注入方法使mln具有多权重容错性","authors":"I. Takanami, Y. Oyama","doi":"10.1109/PRDC.2002.1185650","DOIUrl":null,"url":null,"abstract":"We propose an efficient method for making multilayered neural networks(MLN) fault-tolerant to all multiple weight faults in an interval by injecting intentionally two extreme values in the interval in a learning phase. The degree of fault-tolerance to a multiple weight fault is measured by the number of essential multiple links. First, we analytically discuss how to choose effectively the multiple links to be injected, and present a learning algorithm for making MLNs fault tolerant to all multiple (i.e., simultaneous) faults in the interval defined by two multi-dimensional extreme points. Then it is shown that after the learning algorithm successfully finishes, MLNs become fault tolerant to all multiple faults in the interval. The time in a weight modification cycle is almost linear for the fault multiplicity. The simulation results show that the computing time drastically reduces as the multiplicity increases.","PeriodicalId":362330,"journal":{"name":"2002 Pacific Rim International Symposium on Dependable Computing, 2002. Proceedings.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extreme value injection approach with reduced learning time to make MLNs multiple-weight-fault tolerant\",\"authors\":\"I. Takanami, Y. Oyama\",\"doi\":\"10.1109/PRDC.2002.1185650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an efficient method for making multilayered neural networks(MLN) fault-tolerant to all multiple weight faults in an interval by injecting intentionally two extreme values in the interval in a learning phase. The degree of fault-tolerance to a multiple weight fault is measured by the number of essential multiple links. First, we analytically discuss how to choose effectively the multiple links to be injected, and present a learning algorithm for making MLNs fault tolerant to all multiple (i.e., simultaneous) faults in the interval defined by two multi-dimensional extreme points. Then it is shown that after the learning algorithm successfully finishes, MLNs become fault tolerant to all multiple faults in the interval. The time in a weight modification cycle is almost linear for the fault multiplicity. The simulation results show that the computing time drastically reduces as the multiplicity increases.\",\"PeriodicalId\":362330,\"journal\":{\"name\":\"2002 Pacific Rim International Symposium on Dependable Computing, 2002. Proceedings.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Pacific Rim International Symposium on Dependable Computing, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRDC.2002.1185650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Pacific Rim International Symposium on Dependable Computing, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2002.1185650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效的多层神经网络(MLN)容错方法,通过在学习阶段有意地在区间中注入两个极值,使多层神经网络(MLN)对一个区间内的所有多重权重故障具有容错能力。对多重权重故障的容错程度是通过必要多重链路的数量来衡量的。首先,我们解析地讨论了如何有效地选择要注入的多个链路,并提出了一种学习算法,使mln在由两个多维极值点定义的区间内对所有多个(即同时)故障容错。结果表明,在学习算法成功完成后,mln对区间内的所有多个故障都具有容错能力。对于故障多重性,权值修正周期的时间几乎是线性的。仿真结果表明,随着多重数的增加,计算时间大大缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extreme value injection approach with reduced learning time to make MLNs multiple-weight-fault tolerant
We propose an efficient method for making multilayered neural networks(MLN) fault-tolerant to all multiple weight faults in an interval by injecting intentionally two extreme values in the interval in a learning phase. The degree of fault-tolerance to a multiple weight fault is measured by the number of essential multiple links. First, we analytically discuss how to choose effectively the multiple links to be injected, and present a learning algorithm for making MLNs fault tolerant to all multiple (i.e., simultaneous) faults in the interval defined by two multi-dimensional extreme points. Then it is shown that after the learning algorithm successfully finishes, MLNs become fault tolerant to all multiple faults in the interval. The time in a weight modification cycle is almost linear for the fault multiplicity. The simulation results show that the computing time drastically reduces as the multiplicity increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信